Online Training Session 2, Part B¶
1. Summary of Session 2 Part A¶
Welcome Back. Summary of previous hour.
2. Minimal Principle Series of Split Groups¶
Minimal Principal Series of split groups. \(SL(2,\mathbb{R})\) example. Use of functions KGB(RealForm,int)->KGBElt
, involution(KGBElt)->mat
, all_parameters_gamma(RealForm,ratvec->[Param])
, Induced representations: I(Param)->(Param,string)
, composition_series(Param)->ParamPol
, show(ParamPol)->void
3. More Functions¶
More functions: cuspidal_data(Param)->(([int],KGBElt),Param)
.
4. \(G=PSL(2,\mathbb{R})\)¶
G=PSL(2,R), parameters, composition series. Parameters of trivial rep; is_finite_dimensional(Param)->bool
, dimension(Param)->int
.
5. \(G=Sp(4,\mathbb{R})\)¶
G=Sp(4,R). Principal series, tau-invariant: tau(Param)->[int]
; listing tau invariants, real roots types r1, r2, rn.
6. Characters on Disconnected Part¶
Question: Can lambda-rho get to the sign/trivial characters on the disconnected part?
7. Lowest K Types¶
Lowest K types: Principal series for Sp(4,R)
8. \(G = SO(3,2)\)¶
G=SO(3,2): principal series, tau invariant, composition series
9. More on \(Sp(4,\mathbb{R})\)¶
More on G=Sp(4,R). W-equivalent parameters. The function find([Param],Param)->int.
10. \(E8\)¶
G=E8. Block sizes, split_form(InnerClass/RootDatum/Lietype)->RealForm
; real_forms(InnerClass/CartanClass)->[RealForm]
.