Example \(G=SO(3,2)\)¶
Let’s study the minimal principal series for this group
atlas> G:SO(3,2)
Variable G: RealForm (overriding previous instance, which had type RealForm)
atlas> set parameters=all_parameters_gamma (G, rho(G))
Variable parameters: [Param] (overriding previous instance, which had type [Param])
atlas> rho(G)
Value: [ 3, 1 ]/2
atlas> #parameters
Value: 12
atlas> void: for p in parameters do prints(p) od
final parameter (x=0,lambda=[3,1]/2,nu=[0,0]/1)
final parameter (x=1,lambda=[3,1]/2,nu=[0,0]/1)
final parameter (x=2,lambda=[3,1]/2,nu=[1,-1]/2)
final parameter (x=3,lambda=[3,1]/2,nu=[0,1]/2)
final parameter (x=3,lambda=[3,3]/2,nu=[0,1]/2)
final parameter (x=4,lambda=[3,1]/2,nu=[3,0]/2)
final parameter (x=4,lambda=[5,1]/2,nu=[3,0]/2)
final parameter (x=5,lambda=[3,1]/2,nu=[1,1]/1)
final parameter (x=6,lambda=[3,1]/2,nu=[3,1]/2)
final parameter (x=6,lambda=[5,1]/2,nu=[3,1]/2)
final parameter (x=6,lambda=[3,3]/2,nu=[3,1]/2)
final parameter (x=6,lambda=[5,3]/2,nu=[3,1]/2)
atlas>
We are looking only at the minimal principal series. So we are for the
moment only interested in the last four representations corresponding
to the KGB
element x=6
.
Note that here we can also just use the command
all_minimal_principal_series
:
atlas> ps:=all_minimal_principal_series (G,rho(G))
Value: [final parameter(x=6,lambda=[3,1]/2,nu=[3,1]/2),final parameter(x=6,lambda=[5,1]/2,nu=[3,1]/2),final parameter(x=6,lambda=[3,3]/2,nu=[3,1]/2),final parameter(x=6,lambda=[5,3]/2,nu=[3,1]/2)]
atlas>
And to write them one line at a time we do:
atlas> void: for p in ps do prints(p) od
final parameter(x=6,lambda=[3,1]/2,nu=[3,1]/2)
final parameter(x=6,lambda=[5,1]/2,nu=[3,1]/2)
final parameter(x=6,lambda=[3,3]/2,nu=[3,1]/2)
final parameter(x=6,lambda=[5,3]/2,nu=[3,1]/2)
atlas>
Let us look at the tau
invariants for these standard
representations:
atlas> void: for p in ps do prints(p," ",tau(p)) od
final parameter(x=6,lambda=[3,1]/2,nu=[3,1]/2) [0,1]
final parameter(x=6,lambda=[5,1]/2,nu=[3,1]/2) [1]
final parameter(x=6,lambda=[3,3]/2,nu=[3,1]/2) [1]
final parameter(x=6,lambda=[5,3]/2,nu=[3,1]/2) [0,1]
atlas>
Now, we see that two of them have tau invariant [0,1]
. This is
because they are both one-dimensional representations. The group is
disconnected and has two one-dimensional representations. Each is
equivalent to the other one tensor the sign representation. This
interchanges the two representations. And likewise, the two
representations labeled with the tau
invariant [1]
get
interchanged.
Now let us look at composition series for one of those pairs of representations
atlas> p:ps[3]
Variable p: Param (overriding previous instance, which had type Param)
atlas> p
Value: final parameter(x=6,lambda=[5,3]/2,nu=[3,1]/2)
atlas>
atlas> show(composition_series(I(p)))
1*J(x=6,lambda=[5/2,3/2],nu=[3/2,1/2])
1*J(x=4,lambda=[5/2,1/2],nu=[3/2,0/1])
1*J(x=5,lambda=[3/2,1/2],nu=[1/1,1/1])
1*J(x=3,lambda=[3/2,1/2],nu=[0/1,1/2])
1*J(x=3,lambda=[3/2,3/2],nu=[0/1,1/2])
1*J(x=2,lambda=[3/2,1/2],nu=[1/2,-1/2])
1*J(x=0,lambda=[3/2,1/2],nu=[0/1,0/1])
atlas>
atlas> p:ps[0]
Variable p: Param (overriding previous instance, which had type Param)
atlas> show(composition_series(I(p)))
1*J(x=6,lambda=[3/2,1/2],nu=[3/2,1/2])
1*J(x=4,lambda=[3/2,1/2],nu=[3/2,0/1])
1*J(x=5,lambda=[3/2,1/2],nu=[1/1,1/1])
1*J(x=3,lambda=[3/2,1/2],nu=[0/1,1/2])
1*J(x=3,lambda=[3/2,3/2],nu=[0/1,1/2])
1*J(x=2,lambda=[3/2,1/2],nu=[1/2,-1/2])
1*J(x=0,lambda=[3/2,1/2],nu=[0/1,0/1])
atlas>
These are almost identical but not quite. For example, the lambdas
are different in lines 1 and 2.
Similarly if we look at parameters ps[1] and ps[2] we have
atlas> p:ps[1]
Variable p: Param (overriding previous instance, which had type Param)
atlas> show(composition_series(I(p)))
1*J(x=6,lambda=[5/2,1/2],nu=[3/2,1/2])
1*J(x=4,lambda=[5/2,1/2],nu=[3/2,0/1])
1*J(x=3,lambda=[3/2,3/2],nu=[0/1,1/2])
1*J(x=2,lambda=[3/2,1/2],nu=[1/2,-1/2])
1*J(x=1,lambda=[3/2,1/2],nu=[0/1,0/1])
1*J(x=0,lambda=[3/2,1/2],nu=[0/1,0/1])
atlas>
atlas> p:ps[2]
Variable p: Param (overriding previous instance, which had type Param)
atlas> show(composition_series(I(p)))
1*J(x=6,lambda=[3/2,3/2],nu=[3/2,1/2])
1*J(x=4,lambda=[3/2,1/2],nu=[3/2,0/1])
1*J(x=3,lambda=[3/2,1/2],nu=[0/1,1/2])
1*J(x=2,lambda=[3/2,1/2],nu=[1/2,-1/2])
1*J(x=1,lambda=[3/2,1/2],nu=[0/1,0/1])
1*J(x=0,lambda=[3/2,1/2],nu=[0/1,0/1])
atlas>
These are smaller standard representations, have less complicated and also very similar composition series.