The Character Differential¶
To talk about the differential of a character let us use the example of a complex torus:
atlas> set H=torus(0,1,0)
Identifier H: RealForm (hiding previous one of type string (constant))
If we have a parameter p
we can extract the coordinates of the parameter when needed:
atlas> set p=trivial(H)
Identifier p: Param
atlas> p
Value: final parameter (x=0,lambda=[0,0]/1,nu=[0,0]/1)
atlas> x(p)
Value: KGB element #0
atlas> lambda(p)
Value: [ 0, 0 ]/1
atlas> nu(p)
Value: [0, 0 ]/1
atlas>
And remember that for now, the important piece of information about
x
is the Cartan involution of this Cartan:
atlas> involution (x)
Value:
| 0, 1 |
| 1, 0 |
Now, when we have a parameter p
, we can ask for its infinitesimal
character. The answer is of course more interesting for a non-trivial
character:
atlas> infinitesimal_character (p)
Value: [ 0, 0 ]/1
atlas>
atlas> set q=parameter(x,[1,0],[2,-2])
Identifier q: Param (hiding previous one of type Param)
atlas> q
Value: final parameter (x=0,lambda=[1,0]/1,nu=[2,-2]/1)
atlas> infinitesimal_character (q)
Value: [ 5, -3 ]/2
atlas>
If we have q=(x, lambda, nu)
the differential of this character is
the infinitesimal character which equals \({(1+ \theta )\over 2}
\lambda +{(1- \theta )\over 2} \nu\). But nu
is already averaged so
this equals \({(1+ \theta )\over 2}\lambda +\nu\):
atlas> infinitesimal_character (q)
Value: [ 5, -3 ]/2
atlas> (1+theta)*lambda(q)/2
Value: [ 1, 1 ]/2
atlas> (1+theta)*lambda(q)/2+nu(q)
Value: [ 5, -3 ]/2
atlas>
It is less information than lambda
and nu
. This is because \({(1+ \theta )\over 2}\) looses some of it.