On the double cover of split F_4
and its petite K-types

Alessandra Pantano
joint work with Dan Barbasch

Palo Alto, July 2006
Plan of the talk

• the double cover of split F_4

• the big unitarity problem (find all unitary parameters)

• the petit unitarity problem (find some not-unitary parameters)

• an informal definition of non-spherical petite K-types

• a formal definition of non-spherical petite K-types

• applications to the unitary dual of the double cover of split F_4
Plan of the talk

• **the double cover of split F_4**

• the big unitarity problem

• the petit unitarity problem

• an informal definition of non-spherical petite K-types

• a more technical definition of petite K-types

• applications to the unitary dual of the double cover of split F_4
The double cover of F_4

- $G = \text{the double cover of the split } F_4 \ (F_4 = G/\{\pm I\})$
- $\pi: G \to F_4 = G/\{\pm I\}$, the projection
- $K = SP(1) \times SP(3)$
- Representations of K (classified by highest weight):
 $\mu = (a_1|a_2, a_3, a_4)$, with $a_1 \geq 0$ and $a_2 \geq a_3 \geq a_4 \geq 0$
- Genuine K-types ($-I$ does not act trivially):
 $\mu = (a_1|a_2, a_3, a_4)$, with $a_1 + a_2 + a_3 + a_4$ odd
- $g = k \oplus p$: Cartan decomposition of g
- a: maximal abelian subspace of p, $A = \exp(a)$, $M = Z_K(a)$
- $\Delta^+ = \{2\epsilon_j; \epsilon_i \pm \epsilon_j; \epsilon_1 \pm \epsilon_2 \pm \epsilon_3 \pm \epsilon_4\}$, $n = \bigoplus_{\alpha \in \Delta^+} g_\alpha$, $N = \exp(n)$
Notations

For each root α, we can choose a Lie algebra homomorphism

$$\phi_\alpha : \mathfrak{sl}(2, \mathbb{R}) \rightarrow \mathfrak{g}$$

such that

- $Z_\alpha = \phi_\alpha \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ belongs to $t = \text{Lie}(K)$

- $\sigma_\alpha = \exp(\frac{\pi}{2} Z_\alpha)$ belongs to $M' = N_K(a)$, and

- $m_\alpha = \exp(\pi Z_\alpha)$ belongs to $M = Z_K(a)$.
Exponentiating ϕ_α, we obtain group homomorphisms

$$\tilde{\Phi}_\alpha : \tilde{SL}(2, \mathbb{R}) \to G \quad \Phi_\alpha : SL(2, \mathbb{R}) \to G/\pm I = F_4.$$

The root α is called metaplectic if $\tilde{\Phi}_\alpha$ does not factor to $SL(2, \mathbb{R})$.

only the long roots are metaplectic

Consequences:

- If α is short, then m_α has order two and is central in M
- If α is long, then m_α has order four and $m_\alpha m_\beta = \pm m_\beta m_\alpha$
- If α is short, the eigenvalues of $d\mu(iZ_\alpha)$ are integers $\forall \mu \in \hat{K}$
- If α is long, the eigenvalues of $d\mu(iZ_\alpha)$ are integers if μ is not genuine, and half-integers if μ is genuine.
Let μ be an irreducible representation of K. Then

- μ has level l if $|\gamma| \leq l$, for every eigenvalue γ of $d\mu(iZ_\alpha)$ and every root α

- μ is fine if μ has level 1 (or less)

There are 2 genuine fine K-types: $(1|000)$ and $(0|100)$ and 3 non-genuine fine K-types: $(2|000)$, $(1|100)$ and $(0|000)$.
The group M is a finite group of order 32. Because $\pi(M) = M/\{\pm I\}$ is abelian, the irreducible representations of M have dimension one or two.

There are 16 non-genuine linear characters, and 4 genuine two-dimensional irreducible representations.

The Weyl group acts on \hat{M}. The restrictions to M of a fine K-type is a single orbit, and every representation of M is contained in a unique fine K-type.

Definition: Fix $\delta \in \hat{M}$. A root α is *good* for δ if s_α stabilizes δ.
<table>
<thead>
<tr>
<th>orbit</th>
<th>dim.</th>
<th>$W(\delta)$</th>
<th>fine K-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-genuine→ δ_0</td>
<td>1</td>
<td>$W(F_4)$</td>
<td>(0</td>
</tr>
<tr>
<td>non-genuine→ δ_3</td>
<td>3 × 1</td>
<td>$W(C_4)$</td>
<td>(2</td>
</tr>
<tr>
<td>non-genuine→ δ_{12}</td>
<td>12 × 1</td>
<td>$W(B_3A_1)$</td>
<td>(1</td>
</tr>
<tr>
<td>genuine → δ_2</td>
<td>2</td>
<td>$W(F_4)$</td>
<td>(1</td>
</tr>
<tr>
<td>genuine → δ_6</td>
<td>3 × 2</td>
<td>$W(B_4)$</td>
<td>(0</td>
</tr>
</tbody>
</table>
Plan of the talk

• the double cover of split F_4

• the big unitarity problem

• the petit unitarity problem

• an informal definition of petite K-types

• a more technical definition of petite K-types

• applications to the unitary dual of the double cover of split F_4
For every irreducible representation \((\delta, V^\delta)\) of \(M\), and every strictly dominant real character \(\nu\), we set

\[X_P(\delta, \nu) = \text{the minimal principal series induced from } \delta \otimes \nu \]

\[\tilde{X}_P(\delta, \nu) = \text{the unique irreducible composition factor of } X_P(\delta, \nu) \text{ which contains the fine } K\text{-type } \mu_\delta \text{ corresponding to } \delta. \]

The Langlands quotient \(\tilde{X}_P(\delta, \nu)\) can be obtained as the quotient of \(X_P(\delta, \nu)\) modulo the Kernel of an intertwining operator

\[A: X_P(\delta, \nu) \longrightarrow X_{\tilde{P}}(\delta, \nu) \]

where \(\tilde{P}\) is the opposite parabolic.
For every irreducible representation δ of M, compute the set of unitary parameters

$$\{ \nu \in a \cap \mathbb{R} : \nu \text{ is dominant and } \bar{X}_P(\delta, \nu) \text{ is unitary} \}$$

To check the unitarity of $\bar{X}_P(\delta, \nu)$, we need to
1. construct an invariant Hermitian form on $\bar{X}_P(\delta, \nu)$, if possible
2. verify whether this Hermitian form is positive definite.
Invariant Hermitian forms on \(\tilde{X}_P(\delta, \nu) \)

The long Weyl group element of \(F_4 \) (\(\omega = -Id \)) carries \(\delta \) into \(\delta \) and \(\nu \) in \(-\nu \). So we can use \(\omega \) to construct an *Hermitian* intertwining operator

\[
A(\omega, \delta, \nu) : X_P(\delta, \nu) \to X_P(\delta, -\nu).
\]

This operator gives a *non degenerate* invariant Hermitian form on the Langlands quotient.\(^a\)

\(\tilde{X}_P(\delta, \nu) \) is unitary if and only if \(A(\omega, \delta, \nu) \) is positive semidefinite.

\(^a\)Because \(\tilde{X}_P(\delta, \nu) \) contains only one copy of the fine \(K \)-type \(\mu_\delta \) corresponding to \(\delta \), we can normalize the operator by requiring that it acts trivially \(\mu_\delta \). Then we obtain the *unique* non-degenerate invariant Hermitian form on \(\tilde{X}_P(\delta, \nu) \).
The big unitarity problem is too hard:

Computing the signature of the operator $A(\omega, \delta, \nu)$ is extremely complicated, especially if the K-type is very big. Moreover, we should check the signature on infinitely many K-types.

Instead, we look at the petit unitarity problem.
Plan of the talk

• the double cover of split F_4

• the big unitarity problem

• the petit unitarity problem

• an informal definition of petite K-types

• a more technical definition of petite K-types

• applications to the unitary dual of the double cover of split F_4
the petit unitarity problem

- find finitely many K-types (called “petite”) on which it is easy to compute the signature of the intertwining operator
- use these petite K-types to rule out big regions of not-unitarity.

\[\text{a}\text{The notion of spherical petite } K\text{-type is due to Vogan and Barbasch. We will present a generalization to the non-spherical case.}\]
Let be μ a spherical K-type, i.e. assume that $\text{Res}_M(\mu)$ contains the trivial representation of M.

μ is called petite if it has level ≤ 3.

Remark: if μ is a spherical petite K-type, then $d\mu(Z_\alpha^2)$ acts on the isotypic component of the trivial representation of M with eigenvalues 0 or -4. This condition makes the intertwining operator on μ “very special”, and relatively easy to compute.
The intertwining operator has a decomposition as a product of operators corresponding to simple reflections. The factor corresponding to α acts by

$$1 \cdot s_{\alpha} \quad \frac{1 - \langle \gamma, \bar{\alpha} \rangle}{1 + \langle \gamma, \bar{\alpha} \rangle} \cdot s_{\alpha}$$
Intertwining operator on spherical petite K-types

On a spherical petite K-type the intertwining operator behaves exactly like a p-adic operator.

Because the p-adic spherical unitary dual in known, this matching provides non-unitarity certificates.

We obtain an embedding of the real spherical unitary dual into the p-adic spherical unitary dual.
Plan of the talk

- the double cover of split F_4

- the big unitarity problem

- the petit unitarity problem

- **an informal definition of non-spherical petite K-types**

- a more technical definition of petite K-types

- applications to the unitary dual of the double cover of split F_4
To every non-trivial representation δ of M, we associate a real linear group G_0 (depending on δ).

A K-type μ containing δ is called "petite for δ" if the non-spherical intertwining operator for G on μ matches a spherical intertwining operator for G_0 on some petite K_0-type μ_0.

The spherical unitary dual of G_0 is known, and is detected by a finite number of relevant K_0-types.

If we can match all the relevant K_0-types, then we obtain non-unitarity certificates for Langlands quotients of G:

$$\tilde{X}^G(\delta, \nu) \text{ is unitary } \Rightarrow \tilde{X}^{G_0}(\text{triv}, \nu_0) \text{ is unitary.}$$
The Weyl group W of G acts on \hat{M} by

$$(\sigma \cdot \tau)(m) = \tau(\sigma^{-1}m\sigma).$$

Let $W(\delta) \subseteq W$ be the stabilizer of δ.

It turns out that $W(\delta)$ is the Weyl group of some root system Δ_0. Δ_0 has the same rank as Δ, and in general is not a sub-root system.

We define G_0 to be

- the real split group with root system Δ_0 if δ is non-genuine

- the real split group with root system $\hat{\Delta}_0$ if δ is genuine.

G_0 is always linear, and in general is not a subgroup of G.

<table>
<thead>
<tr>
<th>orbit-type</th>
<th>Δ_0</th>
<th>linear group $G_0(\delta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-genuine</td>
<td>δ_0</td>
<td>F_4 F_4</td>
</tr>
<tr>
<td>non-genuine</td>
<td>δ_3</td>
<td>C_4 $SP(4)$</td>
</tr>
<tr>
<td>non-genuine</td>
<td>δ_{12}</td>
<td>B_3A_1 $SO(3,4) \times SL(2)$</td>
</tr>
<tr>
<td>genuine</td>
<td>δ_2</td>
<td>F_4 F_4^\sim</td>
</tr>
<tr>
<td>genuine</td>
<td>δ_6</td>
<td>B_4 $SP(4)$</td>
</tr>
</tbody>
</table>

If we have “enough” petite K-types for δ, then we can relate the unitarity of a Langlands quotient of G induced from δ to the unitarity of a Langlands quotient of $G_0(\delta)$ induced from the trivial.
the spherical K_0-type μ_0

Suppose that there exists a spherical K_0-type μ_0 s.t.

1. μ_0 has level at most 3
2. as $W(\delta)$-representations

$$\text{Hom}_M(V^\mu, V^\delta) = \text{Hom}_{M_0}(V^{\mu_0}, V^{\delta_0}).$$

Then μ is petite if and only if the intertwining operator for G on μ matches an intertwining operator for G_0 on μ_0.
Plan of the talk

• the double cover of split F_4

• the big unitarity problem

• the petit unitarity problem

• an informal definition of non-spherical petite K-types

• a more technical definition of petite K-types

• applications to the unitary dual of the double cover of split F_4
Let μ be a K-type containing δ. If μ is petite, the intertwining operator on μ should have certain properties (\ldots).

The intertwining operator acts on

$$\text{Hom}_M(V^\mu, V^{\mu_\delta}) = \bigoplus_j \text{Hom}_M(V^\mu, V^{\delta_j})$$

and depends on the eigenvalues of the $d\mu(Z_\alpha^2)$'s (α simple) on the isotypic component in μ of all the M-types δ_j in the W-orbit of δ.\footnote{μ_δ is the unique fine K-type containing δ. Every M-type δ_j in the W-orbit of δ appears in μ_δ with multiplicity one: $\text{Res}_M(\mu_\delta) = \bigoplus_j \delta_j$.}

To define a petite K-type for δ, we essentially need to impose some restrictions on the eigenvalues of the various Z_α^2's.
Let μ be a K-type containing δ. If μ is petite, the intertwining operator on μ should have certain properties (...).

The intertwining operator acts on

$$\text{Hom}_M(V^\mu, V^{\mu\delta}) = \bigoplus_j \text{Hom}_M(V^\mu, V^{\delta_j})$$

and depends on the eigenvalues of the various $d\mu(Z_\alpha^2)$'s on the isotypic component in μ of the W-orbit of δ.\(^a\)

It is clear that the definition of petite K-type must be a restriction on these eigenvalues.

\(^a\) μ_δ is the unique fine K-type containing δ. Every M-type δ_j in the W-orbit of δ appears in μ_δ with multiplicity one: $\text{Res}_M(\mu_\delta) = \bigoplus_j \delta_j$.

The intertwining operator on μ has a factorization as a product of operators $R_\mu(s_\alpha, \gamma)$ corresponding to simple reflections.

The action of a single factor $R_\mu(s_\alpha, \gamma)$ does not respect the decomposition

$$\text{Hom}_M(V^\mu, V^{\mu_\delta}) = \bigoplus_j \text{Hom}_M(V^\mu, V^{\delta_j})$$

but preserves the decomposition of $\text{Hom}_M(V^\mu, V^{\mu_\delta})$ in eigenspaces of $d_\mu(Z^2_\alpha)$:

$$\text{Hom}_M(V^\mu, V^{\mu_\delta}) = \bigoplus_{n \in \mathbb{N}/2} E(-n^2).$$

$R_\mu(s_\alpha, \gamma)$ acts on the $(-n^2)$-eigenspace of $d_\mu(Z^2_\alpha)$ by

$$R_\mu(s_\alpha, \gamma)T(v) = c(\alpha, \gamma, n) \mu_\delta(\sigma_\alpha)T(\mu(\sigma_\alpha)^{-1}v)$$

where $c(\alpha, \gamma, n)$ is a scalar and $\mu_\delta(\sigma_\alpha)T(\mu(\sigma_\alpha)^{-1}v)$ is the action of s_α on $\text{Hom}_M(V^\mu, V^{\mu_\delta})$.
example 1: $d\mu(Z^2_\alpha)$ has even eigenvalues

The operator $R_\mu(s_\alpha, \gamma)$ acts on $\bigoplus_{n \in 2\mathbb{N}} E(-n^2)$ by

\[
\begin{array}{cccc}
E(0) & E(-4) & E(-16) & E(-36) \\
\bullet & \bullet & \bullet & \bullet \\
\downarrow 1 \cdot s_\alpha & \downarrow \frac{1-x}{1+x} \cdot s_\alpha & \downarrow \frac{1-x}{1+x} \frac{3-x}{3+x} \cdot s_\alpha & \downarrow \frac{1-x}{1+x} \frac{3-x}{3+x} \frac{5-x}{5+x} \cdot s_\alpha \\
\bullet & \bullet & \bullet & \bullet \\
E(0) & E(-4) & E(-16) & E(-36) \\
\end{array}
\]

with $x = \langle \gamma, \bar{\alpha} \rangle$.
example 2: $d\mu(Z_\alpha^2)$ has odd eigenvalues

The operator $R_\mu(s_\alpha, \gamma)$ acts on $[\bigoplus_{n \in 2\mathbb{N}+1} E(-n^2)]$ by

\[
\begin{align*}
E(-1) & \quad E(-9) & \quad E(-25) & \quad E(-49) \\
\bullet & \quad \bullet & \quad \bullet & \quad \bullet \quad \ldots \\
1 \cdot s_\alpha & \quad \frac{2-x}{2+x} \cdot s_\alpha & \quad \frac{2-x}{2+x} \frac{4-x}{4+x} \cdot s_\alpha & \quad \frac{2-x}{2+x} \frac{4-x}{4+x} \frac{6-x}{6+x} \cdot s_\alpha \\
\cdot & \quad \bullet & \quad \bullet & \quad \bullet \quad \ldots \\
E(-1) & \quad E(-9) & \quad E(-25) & \quad E(-49)
\end{align*}
\]

with $x = \langle \gamma, \vec{\alpha} \rangle$.
example 3: $d\mu(Z_\alpha^2)$ has half-integers eigenvalues

The operator $R_\mu(s_\alpha, \gamma)$ acts on $\bigoplus_{n\in\mathbb{N}+\frac{1}{2}} E(-n^2)$ by

$$
\begin{align*}
E(-\frac{1}{4}) & \quad E(-\frac{9}{4}) & \quad E(-\frac{25}{4}) & \quad E(-\frac{49}{4}) \\
\bullet & \quad \bullet & \quad \bullet & \quad \bullet \\
1 \cdot s_\alpha & \quad \frac{1}{2} - x \cdot s_\alpha & \quad \frac{3}{2} - x \cdot s_\alpha & \quad \frac{5}{2} - x \cdot s_\alpha \\
\frac{1}{2} + x \cdot s_\alpha & \quad \frac{3}{2} + x \cdot s_\alpha & \quad \frac{5}{2} + x \cdot s_\alpha & \quad \frac{7}{2} + x \cdot s_\alpha \\
\bullet & \quad \bullet & \quad \bullet & \quad \bullet
\end{align*}
$$

with $x = \langle \gamma, \check{\alpha} \rangle$.
If μ is a petite K-type, every factor $R_\mu(s_{\alpha_i}, \gamma_i)$ of the intertwining operator must satisfy some conditions.

These conditions depend on whether the reflection s_{α_i} stabilizes a certain M-type δ_i in the orbit of δ.

- If α_i stabilizes δ_i (i.e. it is good for δ_i), then $R_\mu(s_{\alpha_i}, \gamma_i)$ should behave as a factor of a petite spherical intertwining operator.
- If α_i does not stabilize δ_i (i.e. it is bad for δ_i), then $R_\mu(s_{\alpha_i}, \gamma_i)$ should be independent of the parameter γ_i.

This behavior is equivalent to some eigenvalues-restrictions.

\[^{\text{a}}\]If $\alpha_1, \alpha_2 \ldots \alpha_r$ are the simple reflections involved in the decomposition, we define inductively $\delta_1 = \delta, \delta_2 = s_{\alpha_1}(\delta_1), \ldots, \delta_r = s_{\alpha_{r-1}}(\delta_{r-1})$.

intertwining operator on non-spherical petite K-types
restrictions for μ petite and α_i good for δ_i

Look at the eigenvalues of $d\mu(Z^2_{\alpha_i})$ on the δ_i-isotypic in μ.
If the eigenvalues are of the form $-(2n)^2$, we only allow 0 and -4.

If the eigenvalues are of the form $-(\frac{2n+1}{2})^2$, we only allow $-\frac{1}{4}$, $-\frac{9}{4}$.
restrictions for μ petite and α_i bad for δ_i

Again, look at the eigenvalues of $d\mu(Z_{\alpha_i}^2)$ on the δ_i-isotypic in μ. If the eigenvalues are of the form $-(2n + 1)^2$, we only allow -1

\[E(-1) \quad E(-9) \quad E(-25) \quad E(-49) \]
\[
\downarrow 1 \cdot s_{\alpha_i}
\]
\[E(-1) \quad E(-9) \quad E(-25) \quad E(-49) \]

If the eigenvalues are of the form $-\left(\frac{2n+1}{2}\right)^2$, we only allow $-\frac{1}{4}$

\[E\left(-\frac{1}{4}\right) \quad E\left(-\frac{9}{4}\right) \quad E\left(-\frac{25}{4}\right) \quad E\left(-\frac{49}{4}\right) \]
\[
\downarrow 1 \cdot s_{\alpha_i}
\]
\[E\left(-\frac{1}{4}\right) \quad E\left(-\frac{9}{4}\right) \quad E\left(-\frac{25}{4}\right) \quad E\left(-\frac{49}{4}\right) \]
The Main Theorem

Let μ be a petite K-type for δ, i.e. assume that μ satisfies the eigenvalues-conditions described above.

Suppose that there exists a spherical K_0-type μ_0 s.t.

1. μ_0 has level at most 3
2. as $W(\delta)$-representations

$$\text{Hom}_M(V^\mu, V^\delta) = \text{Hom}_{M_0}(V^{\mu_0}, V^{\delta_0}).$$

Then the intertwining operator for G on μ matches an intertwining operator for G_0 on μ_0.
A technical remark

Let μ be a petite K-type. The restrictions on the eigenvalues of $d\mu(Z_{\alpha_i}^2)$ are “local” conditions: they are imposed on the isotypic of the various δ_i in μ, not “globally” on μ.

It follows that, if δ is non-trivial, we cannot identify a petite K-type for δ just by looking at its level.\(^a\)

Most often, an explicit construction of the K-type is required.\(^b\)

This is just one of the many complications that make the non-spherical case so much harder than the spherical one.

\(^a\)If δ is trivial, every K-type of level at most 3 is petite. If δ is non-trivial, only about a half of the K-types of level 3 turns out to be petite.

\(^b\)We have constructed all our petite K-types using mathematica.
genuine petite K-types and other K-types of level ≤ 3

<table>
<thead>
<tr>
<th>K-type</th>
<th>mult. of δ_6</th>
<th>K-type</th>
<th>mult. of δ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0</td>
<td>1,0,0)$</td>
<td>1</td>
<td>$(1</td>
</tr>
<tr>
<td>$(2</td>
<td>1,0,0)$</td>
<td>3</td>
<td>$(3</td>
</tr>
<tr>
<td>$(1</td>
<td>2,0,0)$</td>
<td>4</td>
<td>$(1</td>
</tr>
<tr>
<td>$(1</td>
<td>1,1,0)$</td>
<td>4</td>
<td>$(1</td>
</tr>
<tr>
<td>$(0</td>
<td>1,1,1)$</td>
<td>1</td>
<td>$(0</td>
</tr>
<tr>
<td>$(2</td>
<td>1,1,1)$</td>
<td>3</td>
<td>$(2</td>
</tr>
<tr>
<td>$(4</td>
<td>1,0,0)$</td>
<td>5</td>
<td>$(5</td>
</tr>
<tr>
<td>$(3</td>
<td>2,0,0)$</td>
<td>8</td>
<td>$(3</td>
</tr>
<tr>
<td>$(3</td>
<td>1,1,0)$</td>
<td>8</td>
<td>$(3</td>
</tr>
<tr>
<td>$(0</td>
<td>3,0,0)$</td>
<td>5</td>
<td>$(0</td>
</tr>
<tr>
<td>$(2</td>
<td>3,0,0)$</td>
<td>8</td>
<td>$(2</td>
</tr>
<tr>
<td>$(0</td>
<td>2,1,0)$</td>
<td>8</td>
<td>$(0</td>
</tr>
<tr>
<td>$(2</td>
<td>2,1,0)$</td>
<td>5</td>
<td>$(2</td>
</tr>
<tr>
<td>$(1</td>
<td>2,1,1)$</td>
<td>8</td>
<td>$(1</td>
</tr>
</tbody>
</table>

36-1
Plan of the talk

• the double cover of split F_4

• the big unitarity problem

• the petit unitarity problem

• an informal definition of non-spherical petite K-types

• a more technical definition of petite K-types

• applications to the unitary dual
Find a good definition of petite K-types

For each given δ, find all the petite K-types

For each μ petite, find the representation of the stabilizer of δ on $\text{Hom}_M(V^\mu, V^\delta)$. Guess μ_0

Verify that the intertwining operators match δ_2, δ_{12} \rightarrow δ_3, δ_6

If you can match all the relevant K_0-types, deduce the existence of an inclusion of unitary duals

Otherwise, compute the intertwining operator on some non-petite K-types and see what happens
\section*{Example 1: δ_2}

δ_2 is an irreducible genuine representation of M.

The stabilizer of δ_2 is the entire Weyl group $W = W(F_4)$. In particular, every root of F_4 is good for δ_2. \textit{This is an easy example!}

We ask whether it is possible to realize all the relevant $W(F_4)$-types using petite K-types for δ_2.
The relevant $W(F_4)$-types are: 1_1, 2_1, 2_3, 4_2, 8_1 and 9_1.

<table>
<thead>
<tr>
<th>petite K-type</th>
<th>mult. of δ_2</th>
<th>repres. of $W(F_4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1</td>
<td>0,0,0)$</td>
<td>1</td>
</tr>
<tr>
<td>$(3</td>
<td>0,0,0)$</td>
<td>2</td>
</tr>
<tr>
<td>$(1</td>
<td>2,0,0)$</td>
<td>9</td>
</tr>
<tr>
<td>$(1</td>
<td>1,1,0)$</td>
<td>2</td>
</tr>
<tr>
<td>$(0</td>
<td>1,1,1)$</td>
<td>4</td>
</tr>
<tr>
<td>$(0</td>
<td>3,0,0)$</td>
<td>4</td>
</tr>
<tr>
<td>$(0</td>
<td>2,1,0)$</td>
<td>8</td>
</tr>
<tr>
<td>$(1</td>
<td>2,1,1)$</td>
<td>10</td>
</tr>
</tbody>
</table>

We match all of them! So there is an inclusion of unitary duals:

$$\bar{X}^G(\delta_2, \nu) \text{ unitary } \Rightarrow \bar{X}^G(\text{triv}, \nu) \text{ unitary.}$$
Choose a set of simple roots for G (type F_4):

\[\epsilon_1 - \epsilon_2 - \epsilon_3 - \epsilon_4 \quad 2\epsilon_4 \quad \epsilon_3 - \epsilon_4 \quad \epsilon_2 - \epsilon_3 \]

\[\bullet \quad \bullet \quad \bullet \quad \bullet \]

δ_{12} contains 12 one-dimensional representations of M. For each of them, the stabilizer is $W(B_3 \times A_1)$.

Let $\bar{\delta}_{12}$ be the character in δ_{12} that admits

\[2\epsilon_4 \quad \epsilon_1 - \epsilon_2 - \epsilon_3 - \epsilon_4 \quad \epsilon_2 + \epsilon_3 \quad \epsilon_2 - \epsilon_3 \]

\[\bullet \quad \bullet \quad \bullet \quad \bullet \]

as a basis for the good roots.
The following table shows that we can realize all the relevant $W(B_3)$-types and all the relevant $W(A_1)$-types using petite K-types for $\bar{\delta}_{12}$:

<table>
<thead>
<tr>
<th>petite K-type</th>
<th>mult. of δ_{12}</th>
<th>repres. of $W(B_3 \times A_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1</td>
<td>1,0,0)$</td>
<td>1</td>
</tr>
<tr>
<td>$(0</td>
<td>1,1,0)$</td>
<td>1</td>
</tr>
<tr>
<td>$(3</td>
<td>1,0,0)$</td>
<td>2</td>
</tr>
<tr>
<td>$(2</td>
<td>1,1,0)$</td>
<td>3</td>
</tr>
<tr>
<td>$(2</td>
<td>2,0,0)$</td>
<td>3</td>
</tr>
<tr>
<td>$(0</td>
<td>2,0,0)$</td>
<td>1</td>
</tr>
</tbody>
</table>
Because we can match all the relevant $W(B_3 \times A_1)$-types, there exists an inclusion of unitary duals:\(^a\)

\[
\begin{align*}
&\bar{X}^G(\delta_{12}, \gamma) \text{ unitary} \Rightarrow \bar{X}^{SO(3,4) \times SL(2)}(\text{triv}, \gamma_0) \text{ unitary} \\
&\text{Notice that there is a shifting of parameters: if } \gamma = (n_1, n_2, n_3, n_4), \\
&\text{then } \gamma_0 = (n_1 + n_4, n_1 - n_4, n_2 + n_3, n_2 - n_3).
\end{align*}
\]

\(^aSO(3, 2) \times SL(2)\) is the real split group with root system $B_3 \times A_1$.
If $\gamma = (n_1, n_2, n_3, n_4)$ is the parameter for F_4, let $\gamma_0 = (\tilde{n}_1, \tilde{n}_2, \tilde{n}_3, \tilde{n}_4)$ be the corresponding parameter for $B_3 \times A_1$.

The inner product of γ with a basis for the good co-roots in F_4 should match the inner product of γ_0 with the simple co-roots in $B_3 \times A_1$:
example 3: δ_6

δ_6 contains three 2-dimensional irreducible representations of M. For each of them, the stabilizer of δ is $W(B_4)$.

Let $\bar{\delta}_6$ the irreducible component of δ_6 that admits

$$2\epsilon_2 \quad \epsilon_1 - \epsilon_2 - \epsilon_3 - \epsilon_4 \quad 2\epsilon_4 \quad \epsilon_3 - \epsilon_4$$

as a basis for the good roots.

We would like to realize all the relevant $W(B_4)$-types using petite K-types for $\bar{\delta}_6$.
The following is a *complete* list of petite K-types for $\tilde{\delta}_6$:

<table>
<thead>
<tr>
<th>petite K-type</th>
<th>mult. of $\tilde{\delta}_6$</th>
<th>repres. of $W(B_4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0</td>
<td>1,0,0)$</td>
<td>1</td>
</tr>
<tr>
<td>$(2</td>
<td>1,0,0)$</td>
<td>3</td>
</tr>
<tr>
<td>$(1</td>
<td>2,0,0)$</td>
<td>4</td>
</tr>
<tr>
<td>$(1</td>
<td>1,1,0)$</td>
<td>4</td>
</tr>
<tr>
<td>$(0</td>
<td>1,1,1)$</td>
<td>1</td>
</tr>
<tr>
<td>$(2</td>
<td>1,1,1)$</td>
<td>3</td>
</tr>
</tbody>
</table>

The relevant $W(B_4)$-types are:

$$4 \times 0 \quad 31 \times 0 \quad 3 \times 1 \quad \boxed{2 \times 2} \quad 1 \times 3 \quad 0 \times 4.$$

We cannot match 2×2!!!
The relevant $W(B_4)$-type 2×2 is missing. So we cannot deduce an inclusion of unitary duals.

We only get a weaker result:\(^a\)

\[
\begin{align*}
\text{set of unitary parameters for } (\bar{\delta}_6, G) & \subseteq \text{set of unitary parameters for } (\text{triv, } SP(4)) \cup \text{non-unitarity region for } (\text{triv, } SP(4)) \text{ ruled out by } 2 \times 2
\end{align*}
\]

The region ruled out by 2×2 consists of all parameters of the form $\gamma_0 = (a + 1/2, a - 1/2, b, 1)$ with (a, b) in the triangle delimited by the lines $a = 1/2$, $b = 0$ and $a + b = 3/2$.

\(^a\)Notice that the stabilizer of $\tilde{\delta}_6$ is of type B_4 but we are taking $G_0 = SP(4)$. Indeed, $\tilde{\delta}_6$ is genuine, so G_0 must be the split group with co-roots of type B_4.
example 4: δ_3

δ_3 contains three 1-dimensional irreducible representations of M. For each of them, the stabilizer of δ is $W(C^4)$.

Let $\bar{\delta}_3$ the irreducible component of δ_3 that admits

$$
\begin{align*}
\epsilon_1 - \epsilon_2 - \epsilon_3 - \epsilon_4 & \quad \epsilon_3 + \epsilon_4 & \quad \epsilon_2 - \epsilon_3 & \quad \epsilon_3 - \epsilon_4
\end{align*}
$$

as a basis for the good roots.

Next, we look at the complete list of petite K-types for $\bar{\delta}_3$, and we hope to realize all the relevant $W(C^4)$-types: $4 \times 0 \quad 0 \times 4 \quad 3 \times 1 \quad 1 \times 3 \quad 2 \times 2 \quad 31 \times 0$.
<table>
<thead>
<tr>
<th>petite K-type</th>
<th>mult. of $\bar{\delta}_3$</th>
<th>repres. of $W(C_4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(2</td>
<td>0,0,0)$</td>
<td>1</td>
</tr>
<tr>
<td>$(4</td>
<td>0,0,0)$</td>
<td>1</td>
</tr>
<tr>
<td>$(0</td>
<td>2,0,0)$</td>
<td>3</td>
</tr>
<tr>
<td>$(2</td>
<td>2,0,0)$</td>
<td>6</td>
</tr>
<tr>
<td>$(2</td>
<td>1,1,0)$</td>
<td>2</td>
</tr>
<tr>
<td>$(1</td>
<td>3,0,0)$</td>
<td>4</td>
</tr>
<tr>
<td>$(1</td>
<td>2,1,0)$</td>
<td>8</td>
</tr>
<tr>
<td>$(1</td>
<td>1,1,1)$</td>
<td>4</td>
</tr>
<tr>
<td>$(0</td>
<td>2,1,1)$</td>
<td>3</td>
</tr>
<tr>
<td>$(2</td>
<td>2,1,1)$</td>
<td>7</td>
</tr>
</tbody>
</table>

We cannot match 1×3!!!
The relevant $W(C_4)$-type 1×3 is missing. So we cannot deduce an inclusion of unitary duals.

Just like before, we only obtain a weaker result:

\[
\begin{array}{c}
\text{set of unitary parameters for } (\bar{\delta}_3, G') \\
\subseteq \\
\text{set of unitary parameters for } (\text{triv, } SP(4)) \\
\cup \\
\text{non-unitarity region for } (\text{triv, } SP(4)) \\
\text{ruled out by } 1 \times 3
\end{array}
\]

The region ruled out by 1×3 is the \textit{line segment}

\[\gamma_0 = (3/2 + t, 1/2 + t, -1/2 + t, -3/2 + t)\]

with $1/2 \leq t \leq 3/2$.
Understand if these “extra regions” contain any unitarity point.