Abstract. Let \(G \) be the real points of a complex connected reductive algebraic group \(G_C \). Let \(K \) be a maximal compact subgroup of \(G \). We parametrize the set \(\hat{K} \) of irreducible representations of \(K \). The goal is to describe an algorithm for such a parametrization and to implement it as a package of the Atlas of Lie groups and representations software developed by Fokko du Cloux.

1. Introduction

Let \(G_C \) be a complex connected reductive algebraic group and \(G \) the set of real points of \(G_C \). Let \(\theta \) be the Cartan involution of \(G \) which extends to an involution of \(G_C \). We denote by \(K \) a maximal compact subgroup of \(G \). Then \(G_C^\theta = K_C \) the complexification of \(K \). We identify \(G \) with a root datum \((X^*, \Delta^+, X_*, (\Delta^+)^\vee)\). So we would like to describe \(\hat{K} \) in term of \(X^* \).

Let \(H \) be a \(\theta \)-stable Cartan subgroup of \(G \) and \(\Delta(g_C, h_C) \) the corresponding root system of \(g_C = \text{Lie}(G_C) \). \(\Delta_{im} \) and \(\Delta_{re} \) will denote the sets of imaginary and real roots in \(\Delta(g_C, h_C) \) respectively. Then \(X^*(H_C) \) the character lattice of \(H_C \) is isomorphic to \(X^* \). Finally, let \(T = K \cap H \) a compact, possibly disconnected torus.

We have the following lemma:

Lemma 1.1. The set of characters of \(T \) is isomorphic to \(\frac{X^*(H_C)}{(1-\theta)X^*(H_C)} \).

Let \(\rho \) be half the sum of positive roots in \(\Delta(g_C, h_C) \) and fix

\[
\lambda \in \frac{X^*(H_C) + \rho}{(1-\theta)X^*(H_C)}
\]

We want \(I(H, \Delta_{im}^+, \Delta_{re}^+, \lambda) \) to correspond to a virtual representation of \(G \) restricted to \(K \). Consider a discrete series representation of \(G \) restricted to \(K \) for example. The main idea is to describe irreducible representations of \(K \) as lowest \(K \)-types.

Let \(2\rho_r^\vee \) be the sum of positive real coroots. Define

\[
\Delta_T = \{ \text{roots } \perp 2\rho_r^\vee \}.
\]

Key words and phrases.
Then Δ_T is a θ-stable root system corresponding to a real Levi subgroup L of G with H fundamental in L. Fix Δ_T^+ containing Δ_{im}^+ and consider the set

$$\mathcal{L} = \{ \lambda \in \frac{X^*(H_c) + \rho}{(1 - \theta)X^*(H_c)} \}$$

such that

1. λ is weakly dominant for Δ_T^+
2. if α is a simple imaginary root and $\langle \lambda, \alpha^\vee \rangle = 0$ then α is non-compact.
3. if β is a simple real root then $\langle \lambda, \beta^\vee \rangle$ is odd.

(1) ensures that $I(H, \Delta_{im}^+, \Delta_{re}^+, \lambda)$ is a standard limit representation of G restricted to K.

(2) ensures that $I(H, \Delta_{im}^+, \Delta_{re}^+, \lambda)$ is non-zero.

(3) ensures that $I(H, \Delta_{im}^+, \Delta_{re}^+, \lambda)$ cannot be written using a more compact Cartan subgroup and Hecht-Schmid identities.

Given that λ is defined modulo $(1 - \theta)X^*(H_c)$ to see that property (3) is well-defined one only needs to consider that for $\gamma \in X^*(H_c)$,

$$\langle \gamma - \theta \gamma, \beta^\vee \rangle = \langle \gamma, \beta^\vee - \theta \beta^\vee \rangle = \langle \gamma, 2 \beta^\vee \rangle$$

which is even.

The main theorem is:

Theorem 1.2. If $\lambda \in \mathcal{L}$ then $I(H, \Delta_{im}^+, \Delta_{re}^+, \lambda)$ has a unique lowest K-type $\mu(H, \Delta_{im}^+, \Delta_{re}^+, \lambda)$.

Hence

$$\hat{K} = \coprod_{[H \text{ mod conjugation by } K]} \coprod_{\Delta_{im}^+ \text{ mod conjugation by } W(G,H)} \mu(H, \Delta_{im}^+, \Delta_{re}^+, \lambda).$$

To see why conjugation under Δ_{re} does not interfere with this parametrization one has to observe that if $\lambda \simeq \lambda'$ for λ and $\lambda' \in \mathcal{L}$ then for $\beta \in \Delta_{re}$

$$\lambda' = s_\beta(\lambda) - [\rho_R - s_\beta(\rho_R)] = \lambda - (\langle \lambda, \beta^\vee \rangle + 1)\beta = \lambda - 2m\beta \text{ with } m \in \mathbb{Z}$$

But $2m\beta = m\beta - \theta(m\beta) = m(1 - \theta)\beta$.

2. **Algorithm**

To follow

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MASSACHUSETTS, 100 MORRISSEY BOULEVARD, BOSTON, MA 02125-3393

E-mail address: anoel@math.umb.edu