Overview

1. Structure Theory
 (a) Root Data
 (b) Radical, Center, Derived data, dual
 (c) Inner classes (involutions)
 (d) Real Groups
 i. component group, Galois cohomology
 ii. center
 iii. Cartan subgroups and Weyl groups
 iv. Galois cohomology
 (e) Maximal Compact K
 i. K_0 as an algebraic group
 ii. disconnectedness
 iii. Parametrizing representations of K
 (f) K orbits on G/B
 (g) K orbits on G/P

2. The Langlands classification
 (a) standard and irreducible representations
 (b) Kazhdan-Lusztig-Vogan polynomials
3. Induction
 (a) parabolic subgroups
 (b) real parabolic induction
 (c) cohomological induction (Euler characteristic)

4. Hermitian forms
 (a) Hermitian representations
 (b) c-Hermitian form
 (c) signature of Hermitian forms in the equal rank case
 (d) twisted KLV polynomials and the unequal rank case

5. Character theory
 (a) KLV cells
 (b) translation functors
 (c) coherent continuation
 (d) Vogan duality

6. Advanced topics
 (a) Nilpotent orbits
 (b) Associated varieties
 (c) unipotent representations
 (d) Lusztig-Bezrukavnikov conjecture on K-theory of the nilpotent cone

Background
The lectures will assume some familiarity with:

1. Structure theory of reductive groups; for example Springer, *Linear Algebraic Groups* [4].
2. Basics of representations of real groups, \((g, K)\)-modules; for example Chapter 1 of Vogan, *Representations of Real reductive groups* [5] or Chapters 1-3 of Knapp, *Overview* [3].

Atlas software

I’ll be talking about the mathematics behind the atlas software, and the software itself. You may want to install the software on your laptop, although this isn’t necessary. It is available for unix, Mac, and Windows. Go to www.liegroups.org/software. I can help installing it.

Alternatively, you can get an account on atlas.math.umd.edu and run the software there. See me for details.

The theory of real forms and strong real forms is covered in *Real forms and the Kac Classification* [2]. The basic reference for the mathematical background is *Algorithms for Representation Theory of Real groups* [1]. There are a number of other papers on the atlas web site www.liegroups.org/papers, especially in the *Read Me First* section.

Web Site

These notes and other material from the lectures are available at www.liegroups.org

References

