

### **Atlas Project Members**

- Jeffrey Adams
- Dan Barbasch
- Birne Binegar
- Bill Casselman
- Dan Ciubotaru
- Scott Crofts
- Fokko du Cloux
- Alfred Noel
- Tatiana Howard
- Alessandra Pantano
- Annegret Paul

- Patrick Polo
- Siddhartha Sahi
- Susana Salamanca
- John Stembridge
- Peter Trapa
- Marc van Leeuwen
- David Vogan
- Wai-Ling Yee
- Jiu-Kang Yu
- Gregg Zuckerman



Atlas Project Members, AIM, July 2007

Overview

### G= real reductive group G (e.g. $GL(n, \mathbb{R}), Sp(2n, \mathbb{R}), SO(p, q)...$ )

Overview

G= real reductive group G (e.g.  $GL(n, \mathbb{R}), Sp(2n, \mathbb{R}), SO(p, q)...$ )

Unitary dual of G: {irreducible unitary representations of G}/ $\sim$ 

Overview

G= real reductive group G (e.g.  $GL(n, \mathbb{R})$ ,  $Sp(2n, \mathbb{R})$ , SO(p, q)...) Unitary dual of G: {irreducible unitary representations of G}/~ Problem: Give a description of the unitary dual of real group G

Overview

G= real reductive group G (e.g.  $GL(n, \mathbb{R})$ ,  $Sp(2n, \mathbb{R})$ , SO(p, q)...) Unitary dual of G: {irreducible unitary representations of G}/~ Problem: Give a description of the unitary dual of real group G Example: G compact - Weyl (1920s)

Overview

G= real reductive group G (e.g.  $GL(n, \mathbb{R})$ ,  $Sp(2n, \mathbb{R})$ , SO(p, q)...) Unitary dual of G: {irreducible unitary representations of G}/~ Problem: Give a description of the unitary dual of real group G Example: G compact - Weyl (1920s) Example:  $SL(2, \mathbb{R})$  - Bargmann (1947) G= real reductive group *G* (e.g.  $GL(n, \mathbb{R})$ ,  $Sp(2n, \mathbb{R})$ , SO(p, q)...) Unitary dual of G: {irreducible unitary representations of G}/~ Problem: Give a description of the unitary dual of real group G Example: G compact - Weyl (1920s) Example:  $SL(2, \mathbb{R})$  - Bargmann (1947) Example:  $G = GL(n, \mathbb{R})$  - Vogan (1986)

Overview

### Known Unitary Duals red: known black: not known

```
Type A: SL(n, \mathbb{R}), SL(n, \mathbb{H}), SU(n, 1), SU(n, 2), SL(n, \mathbb{C})
SU(p,q)(p,q>2)
Type B: SO(2n, 1), SO(2n + 1, 2), SO(2n + 1, \mathbb{C})
SO(p,q) (p,q \ge 3)
Type C: Sp(4, \mathbb{R}), Sp(n, 1), Sp(2n, \mathbb{C})
Sp(p,q) (p,q \ge 2)
Type D: SO(2n + 1, 1), SO(2n, 2), SO(2n, \mathbb{C})
SO(p,q) (p,q \ge 3), SO^*(2n) (n \ge 4)
Type E_6: E_6(F_4) = SL(3, Cayley)
E_6(Hermitian), E_6(split), E_6(quaternionic), E_6(\mathbb{C})
Type F_4: F_4(B_4)
F_4(\text{split}), F_4(\mathbb{C})
Type G_2: G_2(split), G_2(\mathbb{C})
E_7/E_8: nothing known
```

Overview

**Theorem** [... Vogan, 1980s]: Fix G. There is a finite algorithm to compute the unitary dual of G

Overview

**Theorem** [... Vogan, 1980s]: Fix G. There is a finite algorithm to compute the unitary dual of G

It is not clear this algorithm can be made explicit

Overview

**Theorem** [... Vogan, 1980s]: Fix G. There is a finite algorithm to compute the unitary dual of G

It is not clear this algorithm can be made explicit

It is not clear that it can be implemented on a computer

Overview

**Theorem** [... Vogan, 1980s]: Fix G. There is a finite algorithm to compute the unitary dual of G

It is not clear this algorithm can be made explicit

It is not clear that it can be implemented on a computer

Atlas of Lie Groups and Representations:

Overview

**Theorem** [... Vogan, 1980s]: Fix G. There is a finite algorithm to compute the unitary dual of G

It is not clear this algorithm can be made explicit

It is not clear that it can be implemented on a computer

Atlas of Lie Groups and Representations:

Take this idea seriously

Overview

### **Goals of the Atlas Project**

• Tools for education: teaching Lie groups to graduate students and researchers

Overview

- Tools for education: teaching Lie groups to graduate students and researchers
- Tools for non-specialists who apply Lie groups in other areas

Overview

- Tools for education: teaching Lie groups to graduate students and researchers
- Tools for non-specialists who apply Lie groups in other areas
- Tools for studying other problems in Lie groups

Overview

- Tools for education: teaching Lie groups to graduate students and researchers
- Tools for non-specialists who apply Lie groups in other areas
- Tools for studying other problems in Lie groups
- Deepen our understanding of the mathematics

Overview

- Tools for education: teaching Lie groups to graduate students and researchers
- Tools for non-specialists who apply Lie groups in other areas
- Tools for studying other problems in Lie groups
- Deepen our understanding of the mathematics
- Compute the unitary dual

Two Preliminary Projects Algorithm for the Admissible Dual KLV polynomials The Future

Overview

# Outline of the lecture

Two Preliminary Projects Algorithm for the Admissible Dual KLV polynomials The Future

Overview

# Outline of the lecture

# Constructing representations of Weyl Groups

Computing the signature of a quadratic form Explicitly computing the admissible dual KLV polynomials and the  $E_8$  calculation The Future

Two Preliminary Projects Algorithm for the Admissible Dual KLV polynomials The Future

Overview

# Outline of the lecture

Two Preliminary Projects Algorithm for the Admissible Dual KLV polynomials The Future

Overview

# Outline of the lecture

Two Preliminary Projects Algorithm for the Admissible Dual KLV polynomials The Future

Overview

# Outline of the lecture

Two Preliminary Projects Algorithm for the Admissible Dual KLV polynomials The Future

Overview

# Outline of the lecture

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

### Project 1: Constructing Representations of a finite group G

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

# Project 1: Constructing Representations of a finite group G

Representation theory of G is "completely" determined by its character table.

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

### Project 1: Constructing Representations of a finite group G

Representation theory of G is "completely" determined by its character table.

Problem: Given a finite group G and a row in the character table, write down matrices giving this representation.

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

### Project 1: Constructing Representations of a finite group G

Representation theory of G is "completely" determined by its character table.

Problem: Given a finite group G and a row in the character table, write down matrices giving this representation.

Example: The character table of every Weyl group W is known.

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

### W=Weyl group, simple reflections $s_1, \ldots, s_n$

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

W=Weyl group, simple reflections  $s_1, \ldots, s_n$ 

Problem: Given a row in the character table of W, first entry N, give  $n N \times N$  matrices such that  $\pi(s_i) = A_i$ 

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

W=Weyl group, simple reflections  $s_1, \ldots, s_n$ 

Problem: Given a row in the character table of W, first entry N, give  $n N \times N$  matrices such that  $\pi(s_i) = A_i$ 

(Check defining relations of G and the traces)

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

W=Weyl group, simple reflections  $s_1, \ldots, s_n$ 

Problem: Given a row in the character table of W, first entry N, give  $n N \times N$  matrices such that  $\pi(s_i) = A_i$ 

(Check defining relations of G and the traces)

Fact: can use matrices with integral entries (Springer correspondence)

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

### Character table of $W(E_8)$

| Class   | 1    | 2     | 3    | 4    | 5    | 6    | 7    | 8     | 9     | 10     | 11   | 12   | 13    | 14     | 15    |
|---------|------|-------|------|------|------|------|------|-------|-------|--------|------|------|-------|--------|-------|
| Size    | 1    | 1     | 120  | 120  | 3150 | 3780 | 3780 | 37800 | 37800 | 113400 | 2240 | 4480 | 89600 | 268800 | 15120 |
| Order   | 1    | 2     | 2    | 2    | 2    | 2    | 2    | 2     | 2     | 2      | 3    | 3    | 3     | 3      | 4     |
|         |      |       |      |      |      |      |      |       |       |        |      |      |       |        |       |
| X.1 +   | 1    | 1     | 1    | 1    | 1    | 1    | 1    | 1     | 1     | 1      | 1    | 1    | 1     | 1      | 1     |
| X.2 +   | 1    | 1     | -1   | -1   | 1    | 1    | 1    | -1    | -1    | 1      | 1    | 1    | 1     | 1      | 1     |
| X.3 +   | 8    | -8    | -6   | 6    | 0    | 4    | -4   | 2     | -2    | 0      | 5    | -4   | -1    | 2      | 0     |
| X.4 +   | 8    | -8    | 6    | -б   | 0    | 4    | -4   | -2    | 2     | 0      | 5    | -4   | -1    | 2      | 0     |
| X.5 +   | 28   | 28    | 14   | 14   | -4   | 4    | 4    | -2    | -2    | -4     | 10   | 10   | 1     | 1      | 4     |
| Х.б +   | 28   | 28    | -14  | -14  | -4   | 4    | 4    | 2     | 2     | -4     | 10   | 10   | 1     | 1      | 4     |
| X.7 +   | 35   | 35    | 21   | 21   | 3    | 11   | 11   | 5     | 5     | 3      | 14   | 5    | -1    | 2      | - 5   |
| X.8 +   | 35   | 35    | -21  | -21  | 3    | 11   | 11   | -5    | -5    | 3      | 14   | 5    | -1    | 2      | -5    |
| X.9 +   | 50   | 50    | 20   | 20   | 18   | 10   | 10   | 4     | 4     | 2      | 5    | 5    | -4    | 5      | 10    |
|         |      |       |      |      |      |      |      |       |       |        |      |      |       |        |       |
| X.100 + | 4200 | 4200  | 0    | 0    | 104  | 40   | 40   | 0     | 0     | 8      | -120 | 15   | -12   | 6      | -40   |
| X.101 + | 4200 | 4200  | 420  | 420  | -24  | 40   | 40   | 4     | 4     | 8      | -30  | -30  | 15    | - 3    | 40    |
| X.102 + | 4480 | 4480  | 0    | 0    | -128 | 0    | 0    | 0     | 0     | 0      | -80  | -44  | -20   | 4      | 64    |
| X.103 + | 4536 | -4536 | -378 | 378  | 0    | 60   | -60  | 30    | -30   | 0      | -81  | 0    | 0     | 0      | 0     |
| X.104 + | 4536 | -4536 | 378  | -378 | 0    | 60   | -60  | -30   | 30    | 0      | -81  | 0    | 0     | 0      | 0     |
| X.105 + | 4536 | 4536  | 0    | 0    | -72  | -72  | -72  | 0     | 0     | 24     | 0    | 81   | 0     | 0      | -24   |
| X.106 + | 5600 | -5600 | 0    | 0    | 0    | -80  | 80   | 0     | 0     | 0      | -10  | -100 | 2     | -4     | 0     |
| X.107 + | 5600 | -5600 | -280 | 280  | 0    | -80  | 80   | 8     | -8    | 0      | 20   | 20   | 11    | 2      | 0     |
| X.108 + | 5600 | -5600 | 280  | -280 | 0    | -80  | 80   | -8    | 8     | 0      | 20   | 20   | 11    | 2      | 0     |
| X.109 + | 5670 | 5670  | 0    | 0    | -90  | -90  | -90  | 0     | 0     | 6      | 0    | -81  | 0     | 0      | 6     |
| X.110 + | 6075 | 6075  | 405  | 405  | 27   | -45  | -45  | -27   | -27   | -21    | 0    | 0    | 0     | 0      | -45   |
| X.111 + | 6075 | 6075  | -405 | -405 | 27   | -45  | -45  | 27    | 27    | -21    | 0    | 0    | 0     | 0      | -45   |
| X.112 + | 7168 | -7168 | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0      | -128 | 16   | -32   | -8     | 0     |
|         |      |       |      |      |      |      |      |       |       |        |      |      |       |        |       |

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

#### Example: one matrix from a 30-dimensional representation of $W(E_6)$

0.0.0.0.-3/8.0.0.0.3/8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1/8.0.0.0.0.0. 0.0.3/4.0.0.0.5/4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3/4.0.0.0.0.0.0.0. 0.0.0.0.3/4.0.0.0.5/4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3/4.0.0.0.0.0. 

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

#### **Constructing Representations**

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

## **Constructing Representations**

Obvious algorithm: decompose a larger representation (like the regular representation)

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

## **Constructing Representations**

Obvious algorithm: decompose a larger representation (like the regular representation)

Problem:  $W(E_8)$ dim(regular representation)=696,729,600<sup>2</sup>

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

## **Constructing Representations**

Obvious algorithm: decompose a larger representation (like the regular representation)

Problem:  $W(E_8)$ dim(regular representation)=696,729,600<sup>2</sup> multiplicity of largest irreducible is 7,168

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

## **Constructing Representations**

Obvious algorithm: decompose a larger representation (like the regular representation)

Problem:  $W(E_8)$ dim(regular representation)=696,729,600<sup>2</sup> multiplicity of largest irreducible is 7,168

Decompose tensor products of the reflection representation (meataxe) A integral models: through  $W(E_7)$ , some for  $W(E_8)$ 

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

## **Constructing Representations**

Obvious algorithm: decompose a larger representation (like the regular representation)

Problem:  $W(E_8)$ dim(regular representation)=696,729,600<sup>2</sup> multiplicity of largest irreducible is 7,168

Decompose tensor products of the reflection representation (meataxe) A integral models: through  $W(E_7)$ , some for  $W(E_8)$ 

Construct  $\pi$  by constructing its restriction to a subgroup, and building up.

John Stembridge:  $\mathbb{Q}$ -models including  $W(E_8)$ (for  $W(E_8)$ , LCD(denominators) $\leq$ 594)

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

#### Project 2: Testing positive semidefinitness

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

#### Project 2: Testing positive semidefinitness

 $\pi$  irreducible admissible representation of G

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

## Project 2: Testing positive semidefinitness

 $\pi$  irreducible admissible representation of G

Is  $\pi$  unitary?...

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

## Project 2: Testing positive semidefinitness

 $\pi$  irreducible admissible representation of G

Is  $\pi$  unitary?...

Problem:  $M = n \times n$  rational symmetric matrix. Is M positive semidefinite?

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

# Project 2: Testing positive semidefinitness

 $\pi$  irreducible admissible representation of G

Is  $\pi$  unitary?...

Problem:  $M = n \times n$  rational symmetric matrix. Is M positive semidefinite?

Positive semidefinite: 1)  $(v, v) = vMv^t \ge 0$  for all v

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

# Project 2: Testing positive semidefinitness

 $\pi$  irreducible admissible representation of G

Is  $\pi$  unitary?...

Problem:  $M = n \times n$  rational symmetric matrix. Is M positive semidefinite?

Positive semidefinite: 1)  $(v, v) = vMv^t \ge 0$  for all v2) or all eigenvalues are  $\ge 0$ 

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

# Project 2: Testing positive semidefinitness

 $\pi$  irreducible admissible representation of G

Is  $\pi$  unitary?...

Problem:  $M = n \times n$  rational symmetric matrix. Is M positive semidefinite?

Positive semidefinite:

- 1)  $(v, v) = vMv^t \ge 0$  for all v
- 2) or all eigenvalues are  $\geq 0$
- 3) or det(all principal minors)  $\geq 0$  (2<sup>*n*</sup> of them)

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

What is wrong with computers

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 7 \end{pmatrix}$$

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

What is wrong with computers

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 7 \end{pmatrix}$$

Eigenvalues (Mathematica):

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

What is wrong with computers

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 7 \end{pmatrix}$$

Eigenvalues (Mathematica):

$$\frac{11}{3} + \frac{235^{\frac{2}{3}}}{3\left(241+9i\sqrt{34}\right)^{\frac{1}{3}}} + \frac{\left(5\left(241+9i\sqrt{34}\right)\right)^{\frac{1}{3}}}{3}$$
$$\frac{11}{3} - \frac{235^{\frac{2}{3}}\left(1+i\sqrt{3}\right)}{6\left(241+9i\sqrt{34}\right)^{\frac{1}{3}}} - \frac{\left(1-i\sqrt{3}\right)\left(5\left(241+9i\sqrt{34}\right)\right)^{\frac{1}{3}}}{6}$$
$$\frac{11}{3} - \frac{235^{\frac{2}{3}}\left(1-i\sqrt{3}\right)}{6\left(241+9i\sqrt{34}\right)^{\frac{1}{3}}} - \frac{\left(1+i\sqrt{3}\right)\left(5\left(241+9i\sqrt{34}\right)\right)^{\frac{1}{3}}}{6}$$

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

What is wrong with computers

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 7 \end{pmatrix}$$

Eigenvalues (Mathematica):

$$\frac{11}{3} + \frac{235^{\frac{2}{3}}}{3(241+9i\sqrt{34})^{\frac{1}{3}}} + \frac{\left(5\left(241+9i\sqrt{34}\right)\right)^{\frac{1}{3}}}{3}$$
$$\frac{11}{3} - \frac{235^{\frac{2}{3}}\left(1+i\sqrt{3}\right)}{6(241+9i\sqrt{34})^{\frac{1}{3}}} - \frac{\left(1-i\sqrt{3}\right)\left(5\left(241+9i\sqrt{34}\right)\right)^{\frac{1}{3}}}{6}$$
$$\frac{11}{3} - \frac{235^{\frac{2}{3}}\left(1-i\sqrt{3}\right)}{6(241+9i\sqrt{34})^{\frac{1}{3}}} - \frac{\left(1+i\sqrt{3}\right)\left(5\left(241+9i\sqrt{34}\right)\right)^{\frac{1}{3}}}{6}$$

={10.79 + 0.i,  $-0.34 + 4.44 \times 10^{-16}i$ ,  $0.54 - 4.44 \times 10^{-16}i$ }

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

#### Testing positive semidefinitness

 $M n \times n$  symmetric, rational

 $\sigma(M) = (p, z, q)$  number of (positive, zero, negative) eigenvalues

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

### Testing positive semidefinitness

 $M \ n \times n$  symmetric, rational  $\sigma(M) = (p, z, q)$  number of (positive, zero, negative) eigenvalues  $f_M(x)$ = characteristic polynomial

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Testing positive semidefinitness

 $M \ n \times n$  symmetric, rational  $\sigma(M) = (p, z, q)$  number of (positive, zero, negative) eigenvalues  $f_M(x)$ = characteristic polynomial

 $f_M(x) = a_0 + a_1 x + \dots, a_{n-1} x^{n-1} + a_n x^n$ 

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

#### Testing positive semidefinitness

 $M \ n \times n$  symmetric, rational  $\sigma(M) = (p, z, q)$  number of (positive, zero, negative) eigenvalues  $f_M(x)$  = characteristic polynomial  $f_M(x) = a_0 + a_1 x + \dots, a_{n-1} x^{n-1} + a_n x^n$  $v = (a_0, \dots, a_n) \ (a_i \in \mathbb{R})$ 

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

#### Testing positive semidefinitness

 $M n \times n$  symmetric, rational  $\sigma(M) = (p, z, q)$  number of (positive, zero, negative) eigenvalues  $f_M(x)$  = characteristic polynomial  $f_M(x) = a_0 + a_1 x + \dots, a_{n-1} x^{n-1} + a_n x^n$  $v = (a_0, \ldots, a_n) \ (a_i \in \mathbb{R})$  $\sigma(v) = (p, z, q)$ : p = number of sign changes:  $(\ldots a_i, 0, \ldots, 0, a_j, \ldots)$   $(a_i a_j < 0)$ z = number of zeroes at the beginning q = number of sign changes using  $f_M(-x)$ 

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

#### Testing positive semidefinitness

 $M n \times n$  symmetric, rational  $\sigma(M) = (p, z, q)$  number of (positive, zero, negative) eigenvalues  $f_M(x)$  = characteristic polynomial  $f_M(x) = a_0 + a_1 x + \dots, a_{n-1} x^{n-1} + a_n x^n$  $v = (a_0, \ldots, a_n) \ (a_i \in \mathbb{R})$  $\sigma(v) = (p, z, q)$ : p = number of sign changes:  $(\ldots a_i, 0, \ldots, 0, a_j, \ldots)$   $(a_i a_j < 0)$ z = number of zeroes at the beginning q = number of sign changes using  $f_M(-x)$ 

Lemma (Descartes' rule of signs)

$$\sigma(M) = \sigma(f_M)$$

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

#### David Saunders, Zhendong Wan (Delaware), A:

# Compute the characteristic polynomial mod p + Chinese Remainder

Theorem  $\rightarrow$  compute  $\sigma(M)$ 

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

David Saunders, Zhendong Wan (Delaware), A:

Compute the characteristic polynomial mod p + Chinese Remainder Theorem  $\rightarrow$  compute  $\sigma(M)$ 

**Results** (size of entries  $\leq 2^n$ )

| n     | time                   |
|-------|------------------------|
| 200   | 1 minute               |
| 1,000 | 3 hours                |
| 7,168 | 1 cpu year (projected) |

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

David Saunders, Zhendong Wan (Delaware), A:

Compute the characteristic polynomial mod p + Chinese Remainder Theorem  $\rightarrow$  compute  $\sigma(M)$ 

**Results** (size of entries  $\leq 2^n$ )

| n     | time                   |
|-------|------------------------|
| 200   | 1 minute               |
| 1,000 | 3 hours                |
| 7,168 | 1 cpu year (projected) |

Note: Embarassingly parallelizable

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

#### Spherical Unitary Dual

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

## Spherical Unitary Dual

## What is wrong with computers II

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Spherical Unitary Dual What is wrong with computers II  $\int \sin^{10}(x) \cos(x) dx =$ [Mathematica]:

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Spherical Unitary Dual What is wrong with computers II  $\int \sin^{10}(x) \cos(x) dx =$ [Mathematica]:

$$\frac{21}{512}\sin(x) - \frac{15}{512}\sin(3x) + \frac{15}{512}\sin(35x) - \frac{5}{1024}\sin(7x) + \frac{11}{11264}\sin(9x) + C$$

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

## Spherical Unitary dual

G=classical real or split p-adic group  $\widehat{G}_{sph}$  = spherical unitary dual: irreducible unitary representations containing a *K*-fixed vector.

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

## Spherical Unitary dual

G=classical real or split p-adic group  $\widehat{G}_{sph}$  = spherical unitary dual: irreducible unitary representations containing a *K*-fixed vector.

Subset of  $\mathfrak{A}(\mathbb{C})^*$  (reduces to  $\mathfrak{A}(\mathbb{R})^* \simeq \mathbb{R}^n$ ) Dan Barbasch: beautiful conceptual description of  $\widehat{G}_{sph}$  (in terms of geometry on the dual side)

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

## Spherical Unitary dual

G=classical real or split p-adic group  $\widehat{G}_{sph}$  = spherical unitary dual: irreducible unitary representations containing a *K*-fixed vector.

Subset of  $\mathfrak{A}(\mathbb{C})^*$  (reduces to  $\mathfrak{A}(\mathbb{R})^* \simeq \mathbb{R}^n$ ) Dan Barbasch: beautiful conceptual description of  $\widehat{G}_{sph}$  (in terms of geometry on the dual side)

Barbasch/Ciubotaru: Also results for exceptional groups; confirmed by atlas computations

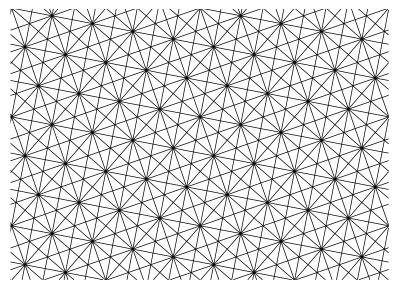
Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Spherical Unitary dual via atlas

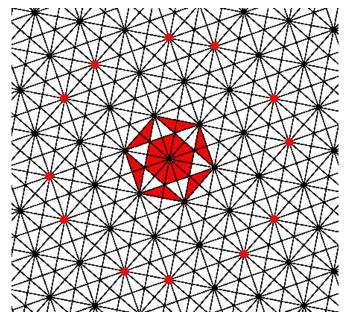
Atlas: computes the spherical unitary dual  $\widehat{G}_{sph}$ Example G=G<sub>2</sub>

```
(0,0,0) 
(-3/8,-3/8,3/4) 
(-1/4,-1/2,3/4) 
(-1/6,-5/12,7/12) 
(-1/2,-1/2,1) 
(-1,-2,3) 
(0,-1,1) 
(-1/3,-1/3,2/3)
```

G: split, p-adic



Example: Hyperplanes in  $\mathfrak{a}(\mathbb{R})^*$  for  $G_2$ 



Example: Spherical unitary dual of  $G_2$  (Vogan, Barbasch, Atlas)

Unitary Dual Other Duals

## Unitary Dual

G = real reductive group

for example  $GL(n, \mathbb{R})$ ,  $Sp(2n, \mathbb{R})$ , Spin(p, q),  $E_8(split)$ ,...)

Unitary Dual Other Duals

## Unitary Dual

G = real reductive group

for example  $GL(n, \mathbb{R})$ ,  $Sp(2n, \mathbb{R})$ , Spin(p, q),  $E_8(split)$ ,...)

Representation:  $(\pi, \mathcal{H})$  of *G* on a Hilbert space  $\mathcal{H}$  (continuous)

Unitary Dual Other Duals

### Unitary Dual

G = real reductive group

for example  $GL(n, \mathbb{R})$ ,  $Sp(2n, \mathbb{R})$ , Spin(p, q),  $E_8(split)$ ,...)

Representation:  $(\pi, \mathcal{H})$  of *G* on a Hilbert space  $\mathcal{H}$  (continuous)

Unitary:  $\langle \pi(g)v, \pi(g)v' \rangle = \langle v, v' \rangle \ (v, v' \in \mathcal{H}, g \in G)$ 

Unitary Dual Other Duals

## Unitary Dual

G = real reductive group

for example  $GL(n, \mathbb{R})$ ,  $Sp(2n, \mathbb{R})$ , Spin(p, q),  $E_8(split)$ ,...)

Representation:  $(\pi, \mathcal{H})$  of *G* on a Hilbert space  $\mathcal{H}$  (continuous)

Unitary:  $\langle \pi(g)v, \pi(g)v' \rangle = \langle v, v' \rangle \ (v, v' \in \mathcal{H}, g \in G)$ 

 $\widehat{G}_u = \{$ irreducible unitary representations of  $G\}/\sim$ 

(unitary equivalence)

Unitary Dual Other Duals

#### Admissible Dual

## K=maximal compact subgroup of *G* Admissible Representation: dim Hom<sub>*K*</sub>( $\sigma$ , $\mathcal{H}$ ) $\leq \infty$ (all $\sigma$ )

Unitary Dual Other Duals

## Admissible Dual

K=maximal compact subgroup of *G* Admissible Representation: dim Hom<sub>*K*</sub>( $\sigma$ ,  $\mathcal{H}$ )  $\leq \infty$  (all  $\sigma$ )  $\widehat{G}_{a} = \{$  irreducible admissible representations of *G* $\}/\sim$ 

(infinitesimal equivalence)

Unitary Dual Other Duals

## Admissible Dual

K=maximal compact subgroup of *G* Admissible Representation: dim Hom<sub>*K*</sub>( $\sigma$ ,  $\mathcal{H}$ )  $\leq \infty$  (all  $\sigma$ )

 $\widehat{G}_a = \{$  irreducible admissible representations of  $G\}/\sim$  (infinitesimal equivalence)

Equivalently:

Definition: A  $(\mathfrak{g}, K)$ -module is a vector space V, with compatible representations of  $\mathfrak{g}$  and K.

 $\widehat{G}_a = \{ \text{irreducible admissible } (\mathfrak{g}, K) \text{-modules} \} / \sim$ 

Unitary Dual Other Duals

## Admissible Dual

K=maximal compact subgroup of *G* Admissible Representation: dim Hom<sub>*K*</sub>( $\sigma$ ,  $\mathcal{H}$ )  $\leq \infty$  (all  $\sigma$ )

 $\widehat{G}_a = \{$  irreducible admissible representations of  $G\}/\sim$  (infinitesimal equivalence)

Equivalently:

Definition: A  $(\mathfrak{g}, K)$ -module is a vector space V, with compatible representations of  $\mathfrak{g}$  and K.

 $\widehat{G}_a = \{ \text{irreducible admissible } (\mathfrak{g}, K) \text{-modules} \} / \sim$ 

 $\widehat{G}_u\subset \widehat{G}_a$ 

Unitary Dual Other Duals

#### Other Duals

Tempered Dual  $\widehat{G}_t$ : support of Plancherel measure, giving regular representation  $L^2(G)$ 

Unitary Dual Other Duals

#### Other Duals

Tempered Dual  $\widehat{G}_t$ : support of Plancherel measure, giving regular representation  $L^2(G)$ 

Discrete Series  $\widehat{G}_d$ : occuring as direct summands of  $L^2(G)$ 

Unitary Dual Other Duals

#### Other Duals

Tempered Dual  $\widehat{G}_t$ : support of Plancherel measure, giving regular representation  $L^2(G)$ 

Discrete Series  $\widehat{G}_d$ : occuring as direct summands of  $L^2(G)$ 

Hermitian Dual  $\widehat{G}_h$ : ( $\mathfrak{g}$ , K)-modules preserving a Hermitian form (not necessarily positive definite)

Unitary Dual Other Duals

#### Tempered/Unitary/Hermitian/Admissible



Unitary Dual Other Duals

#### Tempered/Unitary/Hermitian/Admissible



 $\widehat{G}_d, \widehat{G}_l$ : known (Harish-Chandra)  $\widehat{G}_a$ : known (Langlands/Knapp-Zuckerman/Vogan)  $\widehat{G}_h$ : known (Knapp-Zuckerman)

Unitary Dual Other Duals

### Tempered/Unitary/Hermitian/Admissible



 $\widehat{G}_d, \widehat{G}_t$ : known (Harish-Chandra)  $\widehat{G}_a$ : known (Langlands/Knapp-Zuckerman/Vogan)  $\widehat{G}_h$ : known (Knapp-Zuckerman) To compute  $\widehat{G}_u$ :

Unitary Dual Other Duals

### Tempered/Unitary/Hermitian/Admissible

$$\widehat{G}_d \subset \widehat{G}_t \subset \widehat{G}_u \subset \widehat{G}_h \subset \widehat{G}_a$$

 $\widehat{G}_d, \widehat{G}_t$ : known (Harish-Chandra)  $\widehat{G}_a$ : known (Langlands/Knapp-Zuckerman/Vogan)  $\widehat{G}_h$ : known (Knapp-Zuckerman)

To compute  $\widehat{G}_{u}$ :

For each representation in  $\widehat{G}_h - \widehat{G}_t$ , test whether the unique invariant Hermitian form is positive definite.

Unitary Dual Other Duals

### Tempered/Unitary/Hermitian/Admissible



 $\widehat{G}_d, \widehat{G}_t$ : known (Harish-Chandra)  $\widehat{G}_a$ : known (Langlands/Knapp-Zuckerman/Vogan)  $\widehat{G}_h$ : known (Knapp-Zuckerman)

To compute  $\widehat{G}_{u}$ :

For each representation in  $\widehat{G}_h - \widehat{G}_t$ , test whether the unique invariant Hermitian form is positive definite.

Not clear: a finite algorithm for this for even for a single  $\pi$ 

Unitary Dual Other Duals

### Tempered/Unitary/Hermitian/Admissible



 $\widehat{G}_d, \widehat{G}_t$ : known (Harish-Chandra)  $\widehat{G}_a$ : known (Langlands/Knapp-Zuckerman/Vogan)  $\widehat{G}_h$ : known (Knapp-Zuckerman)

To compute  $\widehat{G}_{u}$ :

For each representation in  $\widehat{G}_h - \widehat{G}_t$ , test whether the unique invariant Hermitian form is positive definite.

Not clear: a finite algorithm for this for even for a single  $\pi$ 

Uncountably many  $\pi$  to test

Unitary Dual Other Duals

## Example: $G = SL(2, \mathbb{R}), V = L^2(\mathbb{R})$

Family of (spherical) representations parametrized by  $\nu \in \mathbb{C}$ 

Unitary Dual Other Duals

Example:  $G = SL(2, \mathbb{R}), V = L^2(\mathbb{R})$ 

Family of (spherical) representations parametrized by  $\nu \in \mathbb{C}$ 

$$\pi_{\nu}(g)f(x) = |-bx+d|^{-1-\nu}f((ax-c)/(-bx+d))$$

 $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 

Unitary Dual Other Duals

Example:  $G = SL(2, \mathbb{R}), V = L^2(\mathbb{R})$ 

Family of (spherical) representations parametrized by  $\nu \in \mathbb{C}$ 

$$\pi_{\nu}(g)f(x) = |-bx+d|^{-1-\nu}f((ax-c)/(-bx+d))$$

 $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 

Irreducible for  $\nu \neq \pm 1, \pm 3, \ldots$ 

Unitary Dual Other Duals

Example:  $G = SL(2, \mathbb{R}), V = L^2(\mathbb{R})$ 

Family of (spherical) representations parametrized by  $\nu \in \mathbb{C}$ 

$$\pi_{\nu}(g)f(x) = |-bx+d|^{-1-\nu}f((ax-c)/(-bx+d))$$

 $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 

Irreducible for  $\nu \neq \pm 1, \pm 3, \ldots$ 

Unitary for  $v \in i\mathbb{R}$  and  $-1 \leq v \leq 1$ 

Unitary Dual Other Duals

Example:  $G = SL(2, \mathbb{R}), V = L^2(\mathbb{R})$ 

Family of (spherical) representations parametrized by  $\nu \in \mathbb{C}$ 

$$\pi_{\nu}(g)f(x) = |-bx+d|^{-1-\nu}f((ax-c)/(-bx+d))$$

 $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 

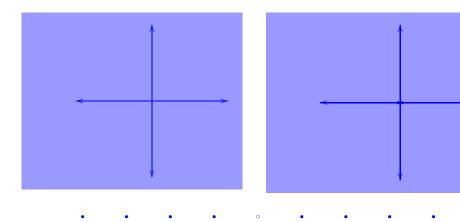
Irreducible for  $\nu \neq \pm 1, \pm 3, \ldots$ 

Unitary for  $\nu \in i\mathbb{R}$  and  $-1 \leq \nu \leq 1$ 

Note:  $\langle , \rangle$  is not the usual one for  $-1 \le \nu \le 1, \nu \ne 0$ 

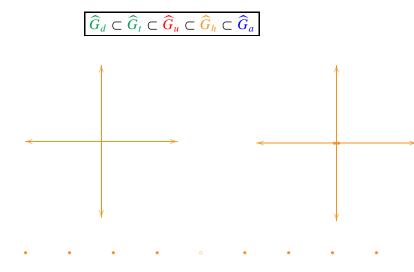
Example: Various duals of  $SL(2, \mathbb{R})$ 





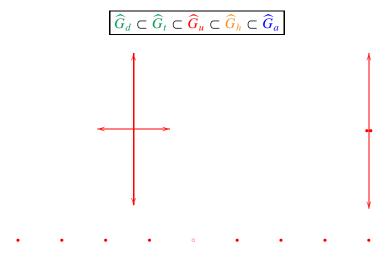
#### Admissible dual

Example: Various duals of  $SL(2, \mathbb{R})$ 



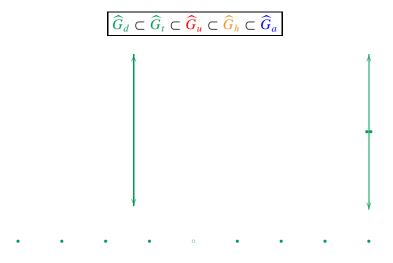
Hermitian dual

Example: Various duals of  $SL(2, \mathbb{R})$ 



Unitary dual

Example: Various duals of  $SL(2, \mathbb{R})$ 



Tempered dual

Unitary Dual Other Duals

First step:

# Problem: Explicitly compute $\widehat{G}_a$

Unitary Dual Other Duals

First step:

# Problem: Explicitly compute $\widehat{G}_a$

Known by Langlands, Knapp/Zuckerman, Vogan

Unitary Dual Other Duals

First step:

# Problem: Explicitly compute $\widehat{G}_a$

Known by Langlands, Knapp/Zuckerman, Vogan

Example: How many irreducible representations does the split real form of  $E_8$  have at infinitesimal character  $\rho$ ?

Unitary Dual Other Duals

First step:

# Problem: Explicitly compute $\widehat{G}_a$

Known by Langlands, Knapp/Zuckerman, Vogan

Example: How many irreducible representations does the split real form of  $E_8$  have at infinitesimal character  $\rho$ ?

Answer: 526,471

Unitary Dual Other Duals

First step:

# Problem: Explicitly compute $\widehat{G}_a$

Known by Langlands, Knapp/Zuckerman, Vogan

Example: How many irreducible representations does the split real form of  $E_8$  have at infinitesimal character  $\rho$ ?

Answer: 526,471

(2,157 of them = .41% are unitary)

Unitary Dual Other Duals

## Computing the Admissible Dual

 $\Pi(G, \rho)$  = irreducible admissible representations with infinitesimal character  $\rho$  (same as the trivial representation) Finite set (Harish-Chandra).

Unitary Dual Other Duals

## Computing the Admissible Dual

 $\Pi(G, \rho)$  = irreducible admissible representations with infinitesimal character  $\rho$  (same as the trivial representation) Finite set (Harish-Chandra).

More precise problem: Give an explicit, natural parametrization of  $\Pi(G, \rho)$ 

Unitary Dual Other Duals

## Computing the Admissible Dual

 $\Pi(G, \rho)$  = irreducible admissible representations with infinitesimal character  $\rho$  (same as the trivial representation) Finite set (Harish-Chandra).

More precise problem: Give an explicit, natural parametrization of  $\Pi(G, \rho)$ 

1) explicit: a computable combinatorial set

Unitary Dual Other Duals

## Computing the Admissible Dual

 $\Pi(G, \rho)$  = irreducible admissible representations with infinitesimal character  $\rho$  (same as the trivial representation) Finite set (Harish-Chandra).

More precise problem: Give an explicit, natural parametrization of  $\Pi(G, \rho)$ 

1) explicit: a computable combinatorial set

2) natural: make the Kazhdan-Lusztig-Vogan polynomials computable

Unitary Dual Other Duals



#### Fokko du Cloux

Unitary Dual Other Duals

# What Fokko did

 $\rightarrow$ 

Abstract Mathematics Lie Groups Representation Theory  $\begin{array}{rcl} \mbox{Algorithm} & \rightarrow & \mbox{Software} \\ \mbox{Combinatorial Set} & & \mbox{C++ code} \end{array}$ 

Unitary Dual Other Duals

### What Fokko did

Abstract Mathematics→AlgorithmLie GroupsCombinatorial SetRepresentation Theory

 $\rightarrow \quad \begin{array}{l} \text{Software} \\ \text{C++ code} \end{array}$ 

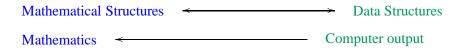
Mathematical Structures

Data Structures

Unitary Dual Other Duals

### What Fokko did

 $\begin{array}{rccc} Abstract Mathematics & \rightarrow & Algorithm & \rightarrow & Software \\ Lie Groups & Combinatorial Set & C++ code \\ Representation Theory & & & & \\ \end{array}$ 



Unitary Dual Other Duals

# **Basic Data**

 $G = G(\mathbb{C})$ = arbitrary complex, connected, reductive algebraic group [Data structure: (root data) pair of  $m \times n$  integral matrices, m=rank, n=semisimple rank]

Unitary Dual Other Duals

# Basic Data

 $G = G(\mathbb{C})$ = arbitrary complex, connected, reductive algebraic group [Data structure: (root data) pair of  $m \times n$  integral matrices, m=rank, n=semisimple rank]

 $\theta$  = involution of *G*, *K* = *G*<sup> $\theta$ </sup>

Unitary Dual Other Duals

# **Basic** Data

 $G = G(\mathbb{C})$ = arbitrary complex, connected, reductive algebraic group [Data structure: (root data) pair of  $m \times n$  integral matrices, m=rank, n=semisimple rank]

 $\theta$  = involution of *G*, *K* = *G*<sup> $\theta$ </sup>

(Corresponds to  $G(\mathbb{R})$ ,  $K(\mathbb{R}) = G(\mathbb{R})^{\theta}$  = maximal compact subgroup)

Unitary Dual Other Duals

# **Basic** Data

 $G = G(\mathbb{C})$ = arbitrary complex, connected, reductive algebraic group [Data structure: (root data) pair of  $m \times n$  integral matrices, m=rank, n=semisimple rank]

 $\theta$  = involution of *G*, *K* = *G*<sup> $\theta$ </sup>

(Corresponds to  $G(\mathbb{R})$ ,  $K(\mathbb{R}) = G(\mathbb{R})^{\theta}$  = maximal compact subgroup)

For now assume *G* is simply connected, adjoint and Out(G) = 1(Examples:  $G = G_2$ ,  $F_4$  or  $E_8$ )

Unitary Dual Other Duals

 $\frac{K \setminus G/B}{G = G(\mathbb{C}), \text{ involution } \theta, K = G^{\theta}}$ 

Unitary Dual Other Duals

### $K \setminus G/B$

- $G = G(\mathbb{C})$ , involution  $\theta$ ,  $K = G^{\theta}$
- $\mathcal{B} = G/B$  = Schubert variety, complex projective variety

Unitary Dual Other Duals

 $K \setminus G/B$ 

 $G = G(\mathbb{C})$ , involution  $\theta$ ,  $K = G^{\theta}$ 

 $\mathcal{B} = G/B$  = Schubert variety, complex projective variety

Fact: K acts on  $\mathcal{B}$  with finitely many orbits

Unitary Dual Other Duals

 $K \setminus G/B$ 

 $G = G(\mathbb{C})$ , involution  $\theta$ ,  $K = G^{\theta}$ 

 $\mathcal{B} = G/B$  = Schubert variety, complex projective variety

Fact: *K* acts on  $\mathcal{B}$  with finitely many orbits

Problem: Parametrize K-orbits on G/B

Unitary Dual Other Duals

Parametrizing  $K \setminus G/B$ 

Definition:  $\mathcal{X} = \{x \in \operatorname{Norm}_G(H) | x^2 = 1\}/H$ 

Unitary Dual Other Duals

Parametrizing  $K \setminus G/B$ 

Definition:  $\mathcal{X} = \{x \in \operatorname{Norm}_G(H) | x^2 = 1\}/H$ 

Properties of  $\mathcal{X}$ :

1) Finite set, explicitly computable

Unitary Dual Other Duals

Parametrizing  $K \setminus G/B$ 

Definition:  $\mathcal{X} = \{x \in \operatorname{Norm}_G(H) | x^2 = 1\}/H$ 

Properties of  $\mathcal{X}$ :

1) Finite set, explicitly computable

2) Action of W

Unitary Dual Other Duals

Parametrizing  $K \setminus G/B$ 

Definition:  $\mathcal{X} = \{x \in \operatorname{Norm}_G(H) | x^2 = 1\}/H$ 

Properties of  $\mathcal{X}$ :

- 1) Finite set, explicitly computable
- 2) Action of W
- 3) W-equivariant map  $\mathcal{X} \twoheadrightarrow W_2$  (involutions in *W*)

Unitary Dual Other Duals

Parametrizing  $K \setminus G/B$ 

Definition:  $\mathcal{X} = \{x \in \operatorname{Norm}_G(H) | x^2 = 1\}/H$ 

Properties of  $\mathcal{X}$ :

- 1) Finite set, explicitly computable
- 2) Action of W
- 3) W-equivariant map  $\mathcal{X} \twoheadrightarrow W_2$  (involutions in *W*)

(Similar to classifying involutions in *W*)

Unitary Dual Other Duals

Parametrizing  $K \setminus G/B$ 

Definition:  $\mathcal{X} = \{x \in \operatorname{Norm}_G(H) | x^2 = 1\}/H$ 

Properties of  $\mathcal{X}$ :

- 1) Finite set, explicitly computable
- 2) Action of W
- 3) W-equivariant map  $\mathcal{X} \twoheadrightarrow W_2$  (involutions in *W*)

(Similar to classifying involutions in *W*)

Theorem: There is a natural bijection

$$\mathcal{X} \xleftarrow{1-1} \coprod_i K_i \setminus \mathcal{B}$$

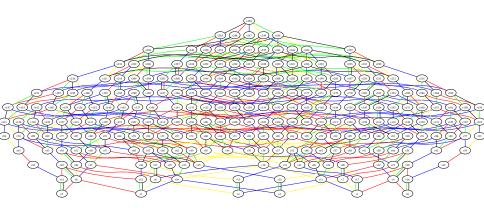
(union over real forms, corresponding  $K_1, \ldots, K_n$ )

Unitary Dual Other Duals

### Example: $K \setminus G/B$ for $SL(4, \mathbb{R})$ :

| 0:  | 0 | 0 | [C,n,C] | 3  | 1  | 3  | *  | 2  | *  |             |
|-----|---|---|---------|----|----|----|----|----|----|-------------|
| 1:  | 0 | 0 | [C,n,C] | 4  | 0  | 4  | *  | 2  | *  |             |
| 2:  | 1 | 1 | [C,r,C] | 6  | 2  | 5  | *  | *  | *  | 2           |
| 3:  | 1 | 0 | [C,C,C] | 0  | 7  | 0  | *  | *  | *  | 1,3         |
| 4:  | 1 | 0 | [C,C,C] | 1  | 8  | 1  | *  | *  | *  | 1,3         |
| 5:  | 2 | 1 | [C,C,C] | 10 | 9  | 2  | *  | *  | *  | 3,2,1       |
| 6:  | 2 | 1 | [C,C,C] | 2  | 11 | 10 | *  | *  | *  | 1,2,3       |
| 7:  | 2 | 0 | [n,C,n] | 8  | 3  | 8  | 11 | *  | 9  | 2,1,3,2     |
| 8:  | 2 | 0 | [n,C,n] | 7  | 4  | 7  | 11 | *  | 9  | 2,1,3,2     |
| 9:  | 3 | 1 | [n,C,r] | 9  | 5  | 9  | 12 | *  | *  | 2,1,3,2,1   |
| 10: | 3 | 1 | [C,n,C] | 5  | 10 | 6  | *  | 12 | *  | 1,2,3,2,1   |
| 11: | 3 | 1 | [r,C,n] | 11 | 6  | 11 | *  | *  | 12 | 1,2,1,3,2   |
| 12: | 4 | 2 | [r,r,r] | 12 | 12 | 12 | *  | *  | *  | 1,2,1,3,2,1 |

Unitary Dual Other Duals



 $K \setminus G/B$  for SO(5, 5)

Unitary Dual Other Duals



Closeup of SO(5, 5) graph

Unitary Dual Other Duals

# The Parameter Space $\mathcal{Z}$

 $G \rightarrow G^{\vee} =$ dual (complex) group

Unitary Dual Other Duals

# The Parameter Space $\mathcal Z$

 $G \rightarrow G^{\vee} =$ dual (complex) group

Amazing fact: parametrizing  $\Pi(G, \lambda)$  amounts to parametrizing  $K \setminus G/B$  and  $K^{\vee} \setminus G^{\vee}/B^{\vee}$ .

Unitary Dual Other Duals

The Parameter Space  $\mathcal Z$ 

 $G \rightarrow G^{\vee} =$ dual (complex) group

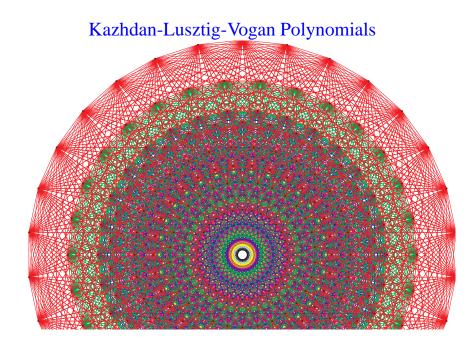
Amazing fact: parametrizing  $\Pi(G, \lambda)$  amounts to parametrizing  $K \setminus G/B$  and  $K^{\vee} \setminus G^{\vee}/B^{\vee}$ .

Theorem: (A/du Cloux) There is a natural bijection:

$$\mathcal{Z} \stackrel{1-1}{\longleftrightarrow} \prod_{i=1}^{n} \Pi(G(\mathbb{R})_{i}, \lambda)$$

(union over real forms of G)  $\mathcal{Z}$  = certain subset of

$$\mathcal{X} \times \mathcal{X}^{\vee} = \coprod_{i} K_{i} \backslash \mathcal{B} \times \coprod_{j} K_{j}^{\vee} \backslash \mathcal{B}^{\vee}$$



 $\begin{array}{l} \textbf{Overview} \\ \text{Definition} \\ \text{The } E_8 \text{ calculation} \\ \text{Final Result} \end{array}$ 



Fokko du Cloux December 20, 1954 - November 10, 2006

Overview Definition

The  $E_8$  calculation Final Result



Marc van Leeuwen Poitiers LiE software

Overview Definition The E<sub>8</sub> calculation Final Result



Marc van Leeuwen Poitiers LiE software



David Vogan MIT

Overview Definition The E<sub>8</sub> calculation Final Result

# Kazhdan-Lusztig-Vogan Polynomials $G = G(\mathbb{C}), K = K(\mathbb{C}), G(\mathbb{R})$ , infinitesimal character $\rho$

Overview Definition The  $E_8$  calculation Final Result

# Kazhdan-Lusztig-Vogan Polynomials $G = G(\mathbb{C}), K = K(\mathbb{C}), G(\mathbb{R})$ , infinitesimal character $\rho$

 $\mathcal{Z}$  = finite set of parameters

Overview Definition The  $E_8$  calculation Final Result

Kazhdan-Lusztig-Vogan Polynomials  $G = G(\mathbb{C}), K = K(\mathbb{C}), G(\mathbb{R}),$  infinitesimal character  $\rho$ 

 $\mathcal{Z}$  = finite set of parameters  $\ni \gamma = (x, y)$ 

 $\begin{array}{l} \textbf{Overview} \\ \text{Definition} \\ \text{The $E_8$ calculation} \\ \text{Final Result} \end{array}$ 

# Kazhdan-Lusztig-Vogan Polynomials

 $G = G(\mathbb{C}), K = K(\mathbb{C}), G(\mathbb{R})$ , infinitesimal character  $\rho$ 

$$\mathcal{Z} =$$
finite set of parameters  $\ni \gamma = (x, y)$ 

 $\gamma \rightarrow I(\gamma) = \text{standard module}$ 

 $\begin{array}{l} \textbf{Overview} \\ \text{Definition} \\ \text{The } E_8 \text{ calculation} \\ \text{Final Result} \end{array}$ 

### Kazhdan-Lusztig-Vogan Polynomials

 $G = G(\mathbb{C}), K = K(\mathbb{C}), G(\mathbb{R})$ , infinitesimal character  $\rho$ 

- $\mathcal{Z}$  = finite set of parameters  $\ni \gamma = (x, y)$
- $\gamma \rightarrow I(\gamma) = \text{standard module}$
- $\gamma \rightarrow \pi(\gamma) =$ irreducible representation

 $\begin{array}{l} \textbf{Overview} \\ \text{Definition} \\ \text{The $E_8$ calculation} \\ \text{Final Result} \end{array}$ 

#### Kazhdan-Lusztig-Vogan Polynomials

 $G = G(\mathbb{C}), K = K(\mathbb{C}), G(\mathbb{R})$ , infinitesimal character  $\rho$ 

- $\mathcal{Z}$  = finite set of parameters  $\ni \gamma = (x, y)$
- $\gamma \rightarrow I(\gamma) = \text{standard module}$
- $\gamma \rightarrow \pi(\gamma) =$ irreducible representation

 $\mathcal{M} = \mathbb{Z} \langle \pi(\gamma) \rangle \quad (\gamma \in \mathcal{Z})$ 

Overview Definition The E<sub>8</sub> calculation Final Result

#### Kazhdan-Lusztig-Vogan Polynomials

 $G = G(\mathbb{C}), K = K(\mathbb{C}), G(\mathbb{R})$ , infinitesimal character  $\rho$ 

- $\mathcal{Z}$  = finite set of parameters  $\ni \gamma = (x, y)$
- $\gamma \rightarrow I(\gamma) = \text{standard module}$
- $\gamma \rightarrow \pi(\gamma) =$ irreducible representation

$$\mathcal{M} = \mathbb{Z} \langle \pi(\gamma) \rangle \quad (\gamma \in \mathcal{Z})$$

Proposition (Langlands, Zuckerman):  $\mathcal{M} = \mathbb{Z} \langle I(\gamma) \rangle$   $(\gamma \in \mathcal{Z})$ 

Overview Definition The E<sub>8</sub> calculation Final Result

## Kazhdan-Lusztig-Vogan Polynomials

Change of Basis Matrices:

 $I(\delta) = \sum_{\delta \in \mathcal{Z}} m(\gamma, \delta) \pi(\gamma)$  $\pi(\delta) = \sum_{\delta \in \mathcal{Z}} M(\gamma, \delta) I(\gamma)$ 

Overview Definition The E<sub>8</sub> calculation Final Result

### Kazhdan-Lusztig-Vogan Polynomials

Change of Basis Matrices:

$$I(\delta) = \sum_{\delta \in \mathcal{Z}} m(\gamma, \delta) \pi(\gamma)$$
  
$$\pi(\delta) = \sum_{\delta \in \mathcal{Z}} M(\gamma, \delta) I(\gamma)$$

Compute  $M(\gamma, \delta)$ ,  $m(\gamma, \delta)$ : Kazhdan-Lusztig-Vogan polynomials

$$P_{\gamma,\delta} = a_0 + a_1 q + \dots + a_n q^n$$

Overview Definition The E<sub>8</sub> calculation Final Result

### Kazhdan-Lusztig-Vogan Polynomials

Change of Basis Matrices:

$$I(\delta) = \sum_{\delta \in \mathcal{Z}} m(\gamma, \delta) \pi(\gamma)$$
  
$$\pi(\delta) = \sum_{\delta \in \mathcal{Z}} M(\gamma, \delta) I(\gamma)$$

Compute  $M(\gamma, \delta)$ ,  $m(\gamma, \delta)$ : Kazhdan-Lusztig-Vogan polynomials

 $P_{\gamma,\delta} = a_0 + a_1 q + \dots + a_n q^n$  $M(\gamma, \delta) = (-1)^{\ell(\gamma) - \ell(\delta)} P_{\gamma,\delta}(1)$ 

 $\begin{array}{l} \textbf{Overview} \\ \text{Definition} \\ \text{The $E_8$ calculation} \\ \text{Final Result} \end{array}$ 

 $\begin{array}{l} \textbf{Overview} \\ \text{Definition} \\ \text{The } E_8 \text{ calculation} \\ \text{Final Result} \end{array}$ 

#### KL and KLV polynomials

original KL polynomialsKLV polynomialsW $\mathcal{Z}$ 

Underlying set

Overview Definition The E<sub>8</sub> calculation Final Result

#### KL and KLV polynomials

original KL polynomialsKLV polynomialsUnderlying setW $\mathcal{Z}$ DataB-orbits on G/BK-orbits on G/B

 $\begin{array}{l} \textbf{Overview} \\ \text{Definition} \\ \text{The $E_8$ calculation} \\ \text{Final Result} \end{array}$ 

|                | original KL polynomials   | KLV polynomials                    |
|----------------|---------------------------|------------------------------------|
| Underlying set | W                         | $\mathcal{Z}$                      |
| Data           | <i>B</i> -orbits on $G/B$ | K-orbits on $G/B$                  |
|                |                           | + local system                     |
| Rep. Theory    | Verma modules             | Representations of $G(\mathbb{R})$ |
|                |                           | (block $\mathcal{B}$ )             |

 $\begin{array}{l} \textbf{Overview} \\ \text{Definition} \\ \text{The $E_8$ calculation} \\ \text{Final Result} \end{array}$ 

|                | original KL polynomials   | KLV polynomials                          |
|----------------|---------------------------|------------------------------------------|
| Underlying set | W                         | $\mathcal{Z}$                            |
| Data           | <i>B</i> -orbits on $G/B$ | K-orbits on $G/B$                        |
|                |                           | + local system                           |
| Rep. Theory    | Verma modules             | Representations of $G(\mathbb{R})$       |
|                |                           | (block $\mathcal{B}$ )                   |
| Properties     | $a_i \ge 0, a_0 = 1$      | $a_i \ge 0, a_0 = 0 \text{ or } 2^k (?)$ |

 $\begin{array}{l} \textbf{Overview} \\ \textbf{Definition} \\ \textbf{The $E_8$ calculation} \\ \textbf{Final Result} \end{array}$ 

|                         | original KL polynomials   | KLV polynomials                          |
|-------------------------|---------------------------|------------------------------------------|
| Underlying set          | W                         | $\mathcal{Z}$                            |
| Data                    | <i>B</i> -orbits on $G/B$ | K-orbits on $G/B$                        |
|                         |                           | + local system                           |
| Rep. Theory             | Verma modules             | Representations of $G(\mathbb{R})$       |
|                         |                           | (block $\mathcal{B}$ )                   |
| Properties              | $a_i \ge 0, a_0 = 1$      | $a_i \ge 0, a_0 = 0 \text{ or } 2^k (?)$ |
| <b>KL</b> ⊂ <b>K</b> LV |                           | $G(\mathbb{R}) = G'(\mathbb{C})$         |

Overview Definition The E<sub>8</sub> calculation Final Result

#### KL and KLV polynomials

|                         | original KL polynomials   | KLV polynomials                          |
|-------------------------|---------------------------|------------------------------------------|
| Underlying set          | W                         | $\mathcal{Z}$                            |
| Data                    | <i>B</i> -orbits on $G/B$ | K-orbits on $G/B$                        |
|                         |                           | + local system                           |
| Rep. Theory             | Verma modules             | Representations of $G(\mathbb{R})$       |
|                         |                           | (block $\mathcal{B}$ )                   |
| Properties              | $a_i \ge 0, a_0 = 1$      | $a_i \ge 0, a_0 = 0 \text{ or } 2^k (?)$ |
| <b>KL</b> ⊂ <b>KL</b> V |                           | $G(\mathbb{R}) = G'(\mathbb{C})$         |

Note: David Vogan calls the polynomials for  $G(\mathbb{R})$  Kazhdan-Lusztig (not Kazhdan-Lusztig-Vogan) polynomials

Overview Definition The E<sub>8</sub> calculation Final Result

### Recursive Definition of KLV polynomials

Data:

1) (W, S) Weyl group, simple roots

Overview Definition The E<sub>8</sub> calculation Final Result

# Recursive Definition of KLV polynomials

Data:

- 1) (W, S) Weyl group, simple roots
- 2) Finite set  $\mathcal{Z}$  parametrizing representations of  $G(\mathbb{R})$

 $\begin{array}{l} \textbf{Overview} \\ \text{Definition} \\ \text{The } E_8 \text{ calculation} \\ \text{Final Result} \end{array}$ 

# Recursive Definition of KLV polynomials

#### Data:

- 1) (W, S) Weyl group, simple roots
- 2) Finite set  $\mathcal{Z}$  parametrizing representations of  $G(\mathbb{R})$
- 3) Length function  $\ell : \mathcal{Z} \to \mathbb{Z}_{\geq 0}$

Overview Definition The E<sub>8</sub> calculation Final Result

# Recursive Definition of KLV polynomials

#### Data:

- 1) (W, S) Weyl group, simple roots
- 2) Finite set  $\mathcal{Z}$  parametrizing representations of  $G(\mathbb{R})$
- 3) Length function  $\ell : \mathcal{Z} \to \mathbb{Z}_{\geq 0}$

4)  $\gamma \rightarrow$  classification of simple roots C+,C-,rn,r1,r2,ic,i1,i2 (atlas output)

1303(952, 31): 13 7 [i2,C-,r2,C-,i1] 1303 1250 1304... 5) Action of W:  $\alpha$  (simple),  $\gamma \rightarrow s_{\alpha} \gamma s_{\alpha}^{-1}$ 

Overview Definition The E<sub>8</sub> calculation Final Result

# Recursive Definition of KLV polynomials

#### Data:

- 1) (W, S) Weyl group, simple roots
- 2) Finite set  $\mathcal{Z}$  parametrizing representations of  $G(\mathbb{R})$
- 3) Length function  $\ell : \mathcal{Z} \to \mathbb{Z}_{\geq 0}$

4)  $\gamma \rightarrow$  classification of simple roots C+,C-,rn,r1,r2,ic,i1,i2 (atlas output)

1303(952, 31): 13 7 [i2,C-,r2,C-,i1] 1303 1250 1304...

5) Action of W:  $\alpha$  (simple),  $\gamma \rightarrow s_{\alpha} \gamma s_{\alpha}^{-1}$ 

6) Left action of some  $s_{\alpha}$ :  $s_{\alpha}\gamma = \gamma_{\alpha}$  or  $\{\gamma_{\alpha}^{+}, \gamma_{\alpha}^{-}\}$ 

Overview Definition The E<sub>8</sub> calculation Final Result

# Recursive Definition of KLV polynomials

#### Data:

- 1) (W, S) Weyl group, simple roots
- 2) Finite set  $\mathcal{Z}$  parametrizing representations of  $G(\mathbb{R})$
- 3) Length function  $\ell : \mathcal{Z} \to \mathbb{Z}_{\geq 0}$

4)  $\gamma \rightarrow$  classification of simple roots C+,C-,rn,r1,r2,ic,i1,i2 (atlas output)

1303(952, 31): 13 7 [i2,C-,r2,C-,i1] 1303 1250 1304...

5) Action of W:  $\alpha$  (simple),  $\gamma \rightarrow s_{\alpha} \gamma s_{\alpha}^{-1}$ 

6) Left action of some  $s_{\alpha}$ :  $s_{\alpha}\gamma = \gamma_{\alpha}$  or  $\{\gamma_{\alpha}^{+}, \gamma_{\alpha}^{-}\}$ 

 $\begin{array}{l} \text{Overview} \\ \textbf{Definition} \\ \text{The $E_8$ calculation} \\ \text{Final Result} \end{array}$ 

# Recursive Definition of KLV polynomials Length order: $\gamma \le \delta$ if $\gamma = \delta$ or $\ell(\gamma) < \ell(\delta)$ (Bruhat order is not needed)

Overview **Definition** The  $E_8$  calculation Final Result

Recursive Definition of KLV polynomials Length order:  $\gamma \le \delta$  if  $\gamma = \delta$  or  $\ell(\gamma) < \ell(\delta)$ (Bruhat order is not needed)

Matrix is triangular:  $P_{\gamma,\delta} = 0$  unless  $\ell(\gamma) \le \ell(\delta)$ 

Overview Definition The E<sub>8</sub> calculation Final Result

Recursive Definition of KLV polynomials Length order:  $\gamma \le \delta$  if  $\gamma = \delta$  or  $\ell(\gamma) < \ell(\delta)$ (Bruhat order is not needed)

Matrix is triangular:  $P_{\gamma,\delta} = 0$  unless  $\ell(\gamma) \le \ell(\delta)$ 

$$\mu(\gamma, \delta) = \text{ coefficient of } q^{\frac{1}{2}(\ell(\delta) - \ell(\gamma) - 1)} \text{ in } P_{\gamma, \delta}$$

Overview Definition The E<sub>8</sub> calculation Final Result

Recursive Definition of KLV polynomials Length order:  $\gamma \le \delta$  if  $\gamma = \delta$  or  $\ell(\gamma) < \ell(\delta)$ (Bruhat order is not needed)

Matrix is triangular:  $P_{\gamma,\delta} = 0$  unless  $\ell(\gamma) \le \ell(\delta)$ 

$$\mu(\gamma, \delta) = \text{ coefficient of } q^{\frac{1}{2}(\ell(\delta) - \ell(\gamma) - 1)} \text{ in } P_{\gamma, \delta}$$

$$U^{\alpha}_{\gamma,\delta} = \sum_{\gamma \leq \zeta < \delta} \mu(\zeta,\delta) P_{\gamma,\zeta}$$

 $\begin{array}{l} \text{Overview} \\ \textbf{Definition} \\ \text{The $E_8$ calculation} \\ \text{Final Result} \end{array}$ 

#### **Recursive Definition of KLV polynomials**

| $\alpha$ w.r.t. $\delta$ | $\alpha$ w.r.t. $\gamma$ | $P_{\gamma,\delta} =$                                                                                                                                                                                        |
|--------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ic/C-/r1 or r2           | i1 or i2                 | $v^{-1}P_{\gamma_{\alpha},\delta}$ or $v^{-1}(P_{\gamma_{\alpha}^+,\delta}+P_{\gamma_{\alpha}^-,\delta})$                                                                                                    |
| ic/C-/r1 or r2           | C+                       | $v^{-1}P_{s_{\alpha} \times \gamma, \delta}$                                                                                                                                                                 |
| C-                       | C-                       | $v P_{\gamma, s_{\alpha} \times \delta} + P_{s_{\alpha} \times \gamma, s_{\alpha} \times \delta} - \frac{U^{\alpha}_{\gamma, \delta}}{V_{\gamma, \delta}}$                                                   |
| r1 or r2*                | r1                       | $(v-v^{-1})P_{\gamma,\delta^+_a} + P_{\gamma^+_a,\delta^+_a} + P_{\gamma^a,\delta^+_a} - \frac{U^a_{\gamma,\delta^+_a}}{V_{\gamma,\delta^+_a}}$                                                              |
| r1 or r2*                | r2                       | $v P_{\gamma,\delta_{\alpha}} - v^{-1} P_{s_{\alpha} \times \gamma,\delta_{\alpha}} + P_{\gamma_{\alpha},\delta_{\alpha}} - \frac{U^{\alpha}_{\gamma,\delta_{\alpha}}}{V^{\alpha}_{\gamma,\delta_{\alpha}}}$ |

(\*): formula is for  $P_{\gamma,\delta} + P_{\gamma,s_{\alpha}\delta}$ 

Overview **Definition** The  $E_8$  calculation Final Result

#### Recursive Definition of KLV polynomials

Overview Definition The E<sub>8</sub> calculation Final Result

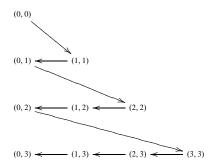
#### Recursive Definition of KLV polynomials

In each case the right formula in boxes involves  $P_{\gamma',\delta'}$  with 1)  $\ell(\delta') < \ell(\delta) \text{ or}$ 2)  $\ell(\delta') = \ell(\delta), \ell(\gamma') > \ell(\gamma)$ 

Overview Definition The E<sub>8</sub> calculation Final Result

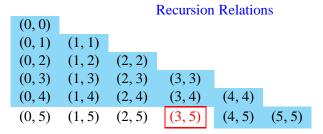
#### **Recursion Relations**

 $P_{\gamma,\gamma} = 1$ Compute  $P_{\gamma,\delta}$  like this:

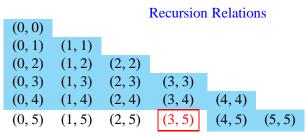


 $((i, j) \text{ is the } P_{\gamma, \delta} \text{ with } \ell(\gamma) = i, \ell(\delta) = j)$ 

Overview Definition The E<sub>8</sub> calculation Final Result

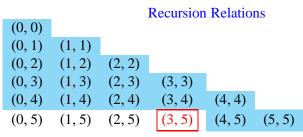


Overview Definition The E<sub>8</sub> calculation Final Result



To compute  $P_{\gamma,\delta}$  with  $\ell(\gamma) = 3$ ,  $\ell(\delta) = 5$ , need potentially all of the  $P_{\gamma,\delta}$  from the blue region.

Overview Definition The E<sub>8</sub> calculation Final Result



To compute  $P_{\gamma,\delta}$  with  $\ell(\gamma) = 3$ ,  $\ell(\delta) = 5$ , need potentially all of the  $P_{\gamma,\delta}$  from the blue region.

( $E_8$ :  $U^{\alpha}_{\gamma,\delta}$  has 150 terms on average)

 $\begin{array}{l} \text{Overview} \\ \textbf{Definition} \\ \text{The $E_8$ calculation} \\ \text{Final Result} \end{array}$ 

#### Conclusion (the bad news)

 $\begin{array}{l} \text{Overview} \\ \textbf{Definition} \\ \text{The $E_8$ calculation} \\ \text{Final Result} \end{array}$ 

# Conclusion (the bad news)

# In order to compute $P_{\gamma,\delta}$ you need to use potentially all $P_{\gamma',\delta'}$ with $\ell(\delta') < \ell(\delta)$ .

Overview Definition The E<sub>8</sub> calculation Final Result

#### Conclusion (the bad news)

In order to compute  $P_{\gamma,\delta}$  you need to use potentially all  $P_{\gamma',\delta'}$  with  $\ell(\delta') < \ell(\delta)$ .

We need to keep all  $P_{\gamma,\delta}$  in RAM! All accessible from a single processor

Overview Definition The E<sub>8</sub> calculation Final Result

# Conclusion (the bad news)

In order to compute  $P_{\gamma,\delta}$  you need to use potentially all  $P_{\gamma',\delta'}$  with  $\ell(\delta') < \ell(\delta)$ .

# We need to keep all $P_{\gamma,\delta}$ in RAM! All accessible from a single processor

See:

David Vogan's narrative, October Notices Marc van Leeuwen's technical discussion www.liegroups.org/talks

Overview Definition **The E<sub>8</sub> calculation** Final Result

# Fokko's code computed all KLV polynomials up to $E_8$ by late 2005 Challenge: Compute KLV for (the large block) of $E_8$

Overview Definition The  $E_8$  calculation Final Result

Fokko's code computed all KLV polynomials up to  $E_8$  by late 2005

Challenge: Compute KLV for (the large block) of  $E_8$ 

 $|\mathcal{Z}| = 453,060$  (this is the largest block)

 $\deg(P_{\gamma,\delta}) \le 31$ 

**Big Problem**: we did not have a good idea of the size of the answer beforehand.

 $a_i \ge 2^{16} = 65,535$  (almost certainly)

 $a_i \leq 2^{32} = 4.3$  billion (we hope?)

Overview Definition The E<sub>8</sub> calculation Final Result

Fokko's code computed all KLV polynomials up to  $E_8$  by late 2005

Challenge: Compute KLV for (the large block) of  $E_8$ 

 $|\mathcal{Z}| = 453,060$  (this is the largest block)

 $\deg(P_{\gamma,\delta}) \leq 31$ 

**Big Problem**: we did not have a good idea of the size of the answer beforehand.

 $a_i \ge 2^{16} = 65,535$  (almost certainly)  $a_i \le 2^{32} = 4.3$  billion (we hope?)

Crude estimates: need about 1 terabyte of RAM (=1,000 gigabytes) (1 gigabyte = 1 billion bytes = RAM in typical home computer) Typical computational machine (not a cluster): 4-8 gigabytes of RAM

Overview Definition **The E<sub>8</sub> calculation** Final Result

Many of the polynomials are equal for obvious reasons. Hope: number of distinct polynomials  $\leq 200$  million. Store only the distinct polynomials (cost of pointers) Hope: average degree = 20  $\rightarrow$  need about 43 gigabytes of RAM

Overview Definition **The E<sub>8</sub> calculation** Final Result

Many of the polynomials are equal for obvious reasons. Hope: number of distinct polynomials  $\leq 200$  million. Store only the distinct polynomials (cost of pointers) Hope: average degree = 20  $\rightarrow$  need about 43 gigabytes of RAM

Experiments (Birne Binegar and Dan Barbasch): About 800 billion distinct polynomials  $\rightarrow 65$  billion bytes

Overview Definition **The E<sub>8</sub> calculation** Final Result

William Stein at Washington lent us SAGE, with 64 gigabytes of RAM (all accessible from one processor)



Overview Definition **The E<sub>8</sub> calculation** Final Result

# Noam Elkies: have to think harder Idea:

Overview Definition **The E<sub>8</sub> calculation** Final Result

# Noam Elkies: have to think harder Idea:

 $2^{16} = 65,536 < Maximum coefficient < 2^{32} = 4.3$  billion (?)

Overview Definition **The E<sub>8</sub> calculation** Final Result

# Noam Elkies: have to think harder Idea:

 $2^{16} = 65,536 < Maximum coefficient < 2^{32} = 4.3$  billion (?)

 $31 < 2^5$ , so to do the calculation (mod *p*) for p < 32 requires 5 bits for each coefficient instead of 32, reducing storage by a factor of 5/32.

Overview Definition **The E<sub>8</sub> calculation** Final Result

# Noam Elkies: have to think harder Idea:

 $2^{16} = 65,536 < Maximum coefficient < 2^{32} = 4.3$  billion (?)

 $31 < 2^5$ , so to do the calculation (mod *p*) for p < 32 requires 5 bits for each coefficient instead of 32, reducing storage by a factor of 5/32.

 $2^{32} < 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 = 100$  billion You then get the answer mod 100,280,245,065 using the Chinese Remainder theorem (cost: running the calculation 9 times)

Overview Definition **The E<sub>8</sub> calculation** Final Result

# Noam Elkies: have to think harder Idea:

 $2^{16} = 65,536 < Maximum coefficient < 2^{32} = 4.3$  billion (?)

 $31 < 2^5$ , so to do the calculation (mod *p*) for p < 32 requires 5 bits for each coefficient instead of 32, reducing storage by a factor of 5/32.

 $2^{32} < 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 = 100$  billion You then get the answer mod 100,280,245,065 using the Chinese Remainder theorem (cost: running the calculation 9 times)

This gets us down to about 15 + 4 = 19 billion bytes

Overview Definition **The** *E***8** calculation Final Result

Eventually: Run the program 4 times, modulo n=251, 253, 255 and 256

Overview Definition **The E<sub>8</sub> calculation** Final Result

Eventually: Run the program 4 times, modulo n=251, 253, 255 and 256

Least common multiple: 4,145,475,840

Overview Definition **The E<sub>8</sub> calculation** Final Result

Eventually:

Run the program 4 times, modulo n=251, 253, 255 and 256

Least common multiple: 4,145,475,840

| Date    | mod | Status   | Result   |
|---------|-----|----------|----------|
| Dec. 6  | 251 | crash    |          |
| Dec. 19 | 251 | complete | 16 hours |
| Dec. 22 | 256 | crash    |          |
| Dec. 22 | 256 | complete | 11 hours |
| Dec. 26 | 255 | complete | 12 hours |
| Dec. 27 | 253 | crash    |          |
| Jan. 3  | 253 | complete | 12 hours |

Overview Definition The E<sub>8</sub> calculation **Final Result** 

#### The final result

Combine the answers using the Chinese Remainder Theorem. Answer is correct if the biggest coefficient is less than 4,145,475,840 Total time (on SAGE): 77 hours

Overview Definition The  $E_8$  calculation **Final Result** 

#### **Some Statistics**

#### Size of output: 60 gigabytes

Overview Definition The E<sub>8</sub> calculation **Final Result** 

### **Some Statistics**

#### Size of output: 60 gigabytes

Number of distinct polynomials: 1,181,642,979

Overview Definition The E<sub>8</sub> calculation **Final Result** 

### **Some Statistics**

#### Size of output: 60 gigabytes

Number of distinct polynomials: 1,181,642,979

Maximal coefficient: 11,808,808

Overview Definition The E<sub>8</sub> calculation **Final Result** 

### Some Statistics

Size of output: 60 gigabytes

Number of distinct polynomials: 1,181,642,979

Maximal coefficient: 11,808,808

Polynomial with the maximal coefficient:  $152q^{22} + 3,472q^{21} + 38,791q^{20} + 293,021q^{19} + 1,370,892q^{18} + 4,067,059q^{17} + 7,964,012q^{16} + 11,159,003q^{15} + 11,808,808q^{14} + 9,859,915q^{13} + 6,778,956q^{12} + 3,964,369q^{11} + 2,015,441q^{10} + 906,567q^9 + 363,611q^8 + 129,820q^7 + 41,239q^6 + 11,426q^5 + 2,677q^4 + 492q^3 + 61q^2 + 3q$ 

Overview Definition The E<sub>8</sub> calculation **Final Result** 

### Some Statistics

Size of output: 60 gigabytes

Number of distinct polynomials: 1,181,642,979

Maximal coefficient: 11,808,808

Polynomial with the maximal coefficient:  $152q^{22} + 3,472q^{21} + 38,791q^{20} + 293,021q^{19} + 1,370,892q^{18} + 4,067,059q^{17} + 7,964,012q^{16} + 11,159,003q^{15} + 11,808,808q^{14} + 9,859,915q^{13} + 6,778,956q^{12} + 3,964,369q^{11} + 2,015,441q^{10} + 906,567q^9 + 363,611q^8 + 129,820q^7 + 41,239q^6 + 11,426q^5 + 2,677q^4 + 492q^3 + 61q^2 + 3q$ 

Value of this polynomial at q=1: 60,779,787

Overview Definition The E<sub>8</sub> calculation **Final Result** 

### Some Statistics

Size of output: 60 gigabytes

Number of distinct polynomials: 1,181,642,979

Maximal coefficient: 11,808,808

Polynomial with the maximal coefficient:  $152q^{22} + 3,472q^{21} + 38,791q^{20} + 293,021q^{19} + 1,370,892q^{18} + 4,067,059q^{17} + 7,964,012q^{16} + 11,159,003q^{15} + 11,808,808q^{14} + 9,859,915q^{13} + 6,778,956q^{12} + 3,964,369q^{11} + 2,015,441q^{10} + 906,567q^9 + 363,611q^8 + 129,820q^7 + 41,239q^6 + 11,426q^5 + 2,677q^4 + 492q^3 + 61q^2 + 3q$ 

Value of this polynomial at q=1: 60,779,787

Number of coefficients in distinct polynomials: 13,721,641,221 (13.9 billion)

### What next?

• Put in  $\lambda$ 

- Put in  $\lambda$
- K-structure of representations

- Put in  $\lambda$
- K-structure of representations
- Singular and non-integral infinitesimal character

- Put in  $\lambda$
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)

- Put in  $\lambda$
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)
- Version 1.0 of the software

- Put in  $\lambda$
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)
- Version 1.0 of the software
- Some results on (non)-unitary representations

- Put in  $\lambda$
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)
- Version 1.0 of the software
- Some results on (non)-unitary representations
- The Unitary Dual ??

# What next?

- Put in  $\lambda$
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)
- Version 1.0 of the software
- Some results on (non)-unitary representations
- The Unitary Dual ??

#### Stay tuned...