$S L(2, \mathbb{R})$ Reference Card

Lie Algebra

$\mathfrak{g}_{0}=\mathfrak{s l}(2, \mathbb{R})$: two-by-two trace 0 real matrices
$\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})$: two-by-two trace 0 complex matrices

$$
E=\frac{1}{2}\left(\begin{array}{cc}
1 & i \\
i & -1
\end{array}\right), \quad F=\frac{1}{2}\left(\begin{array}{cc}
1 & -i \\
-i & -1
\end{array}\right), \quad H=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

$$
[H, E]=2 E,[H, F]=2 F[E, F]=H
$$

$\sigma(X)=\bar{X}, \mathfrak{g}_{0}=\mathfrak{g}^{\sigma}$,
$\theta(X)=X+X^{t}$

$$
\mathfrak{k}_{0}=\mathfrak{g}_{0}^{\theta}=\mathbb{R}(i H), \mathfrak{k}=\mathfrak{g}^{\theta}=\mathbb{C}(H),
$$

Lie Group

$G(\mathbb{C})=S L(2, \mathbb{C})$: two-by-two complex, determinant $=1$ $\sigma(g)=\bar{g}$
$G=G(\mathbb{R})=G(\mathbb{C})^{\sigma}=S L(2, \mathbb{R})$: two-by-two,real, $\operatorname{det}=1$ $\theta(g)={ }^{t} g^{-1}$ (Cartan involution)
$K=G^{\theta}=\left\{\left.\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \right\rvert\, a, b \in \mathbb{C}, a^{2}+b^{2}=1\right\} \simeq \mathbb{C}^{*}$
$K(\mathbb{R})=G(\mathbb{R})^{\theta}=\left\{\left(\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ -\sin (\theta) & \cos (\theta)\end{array}\right)\right\}=S O(2) \simeq S^{1}$
The representations $I(\nu, \epsilon)$
$\nu \in \mathbb{C}, \epsilon \in \mathbb{Z}_{2}=\{0,1\}$
$I(\nu, \epsilon)$ has basis $\left\{v_{j} \mid j \in \epsilon+2 \mathbb{Z}\right\}$
$(\pi, I(\nu, \epsilon))$:

$$
\begin{aligned}
& \pi(H) v_{j}=j v_{j} \\
& \pi(E) v_{j}=1 / 2(\nu+(j+1)) v_{j+2} \\
& \pi(F) v_{j}=1 / 2(\nu-(j-1)) v_{j-2}
\end{aligned}
$$

Auxiliary formulas

$$
\begin{aligned}
\pi(E) v_{j-2} & =1 / 2(\nu+(j-1)) v_{j} \\
\pi(F) v_{j+2} & =1 / 2(\nu-(j+1)) v_{j} \\
\pi(E F) v_{j} & =\frac{1}{4}\left(\nu^{2}-(j-1)^{2}\right) v_{j} \\
\pi(F E) v_{j} & =\frac{1}{4}\left(\nu^{2}-(j+1)^{2}\right) v_{j}
\end{aligned}
$$

Casimir element

$$
\begin{aligned}
\Omega & =H^{2}+2 E F+2 F E+1 \\
& =(H+1)^{2}+4 F E \\
& =(H-1)^{2}+4 E F
\end{aligned}
$$

This is the usual Casimir element +1
Ω acts on $I(\nu, \epsilon)$ by ν^{2}.
Infinitesimal character of $I(\nu, \epsilon): \nu \sim-\nu$,

Reducibility

$I(\nu, \epsilon)$ is reducible if and only if $\nu \in 1+\epsilon+2 \mathbb{Z}$.
$\nu=n \in 1+\epsilon+2 \mathbb{Z}, n \geq 0$:

1. $I_{0}\left(n,(-1)^{n+1}\right)$: finite dimensional quotient, dimension n, K-types $-n+1, \ldots, n-1(0$ if $n=0)$
2. $I_{+}\left(n,(-1)^{n+1}\right)$: summand, K-types $n+1, n+3, \ldots$
3. $I_{-}\left(n,(-1)^{n+1}\right)$: summand, K-types $-n-1,-n-3, \ldots$
$\nu=n \in 1+\epsilon+2 \mathbb{Z}, n \leq 0$:
4. $I_{0}\left(n,(-1)^{n+1}\right)$: finite dimensional summand, dimension n, K-types $n+1, \ldots,-n-1(0$ if $n=0)$
5. $I_{+}\left(n,(-1)^{n+1}\right)$: quotient, K-types $-n+1,-n+3, \ldots$
6. $I_{-}\left(n,(-1)^{n+1}\right)$: quotient, K-types $n-1, n-3, \ldots$

Discrete Series and limits

$$
D S_{ \pm}(n):=I_{ \pm}\left(n,(-1)^{n+1}\right) \quad(n=1,2, \ldots):
$$

discrete series representations.
$D S_{ \pm}(n)$ has K-types $\pm\{n+1, n+3, \ldots\}$. Infinitesimal character is n (regular).

$$
L D S_{ \pm}:=I_{ \pm}(0,-):
$$

limits of discrete series, tempered, not discrete, with K-types $\pm\{1,3, \ldots\}$. Infinitesimal character is 0 (singular).

Finite Dimensional Representations

$$
F(n):=I_{0}\left(\pm n,(-1)^{n+1}\right) \quad(n=1,2, \ldots):
$$

finite dimensional, dimension n, infinitesimal character n, K-types $\{-n+1, n+3, \ldots, n-1\}$

Irreducible representations

Every irreducible (\mathfrak{g}, K)-module is isomorphic to exactly one of these:

1. $I(\nu, \epsilon)=I(-\nu, \epsilon) \quad(\nu \notin 1+\epsilon+2 \mathbb{Z})$;
2. $F(n)(n=1,2, \ldots)$
3. $D S_{ \pm}(n) \quad(n=1,2, \ldots)$

Irreducible Tempered representations

(a) $I(i y,+)(y \in \mathbb{R})$
(b) $I(i y,-)\left(y \in \mathbb{R}^{*}\right)$
(b') $L D S_{ \pm}$(two components of $I(0,-)$)
(c) $D S_{ \pm}(n)(n=1,2, \ldots)$

Real Infinitesimal character

$I(\nu, \epsilon)$ has real infinitesimal character if and only if $\nu \in \mathbb{R}$

Invariant Hermitian Form

If $I(\nu, \epsilon)$ is irreducible the unique (up to scalar) invariant Hermitian form satisfies:

$$
\left(v_{j+2}, v_{j+2}\right)=\frac{(-\bar{\nu}+(j+1))}{(\nu+(j+1))}\left(v_{j}, v_{j}\right) .
$$

c-invariant Hermitian Form

If $I(\nu, \epsilon)$ is irreducible the unique (up to scalar) c-invariant Hermitian form satisfies:

$$
\left(v_{j+2}, v_{j+2}\right)_{c}=\frac{(\bar{\nu}-(j+1))}{(\nu+(j+1))}\left(v_{j}, v_{j}\right)_{c} .
$$

Unitary dual

1. $I(i y,+)(y \in \mathbb{R})$: spherical unitary principal series
2. $I(i y,-)\left(y \in \mathbb{R}^{*}\right)$: nonspherical unitary (irreducible) princpal series
3. $L D S_{ \pm}=I_{ \pm}(0,-)$: limits of discrete series
4. $D S_{ \pm}(n)=I_{ \pm}\left(n,(-1)^{n+1}\right)(n=1,2,3 \ldots)$: discrete series
5. $I(x, 0) \simeq I(-x, 0)(0<x<1)$: complementary series
6. the trivial representation $F(1)=I_{0}(\pm 1,+)$
[^0]
[^0]: Jeffrey Adams jda@math.umd.edu

