
Formula for y

November 10, 2009

More details can be found in Some Notes on Parametrizing Representa-
tions on the atlas web site. In particular this has formulas for computing
Cayley transforms and cross actions in various coordinates.

The main point is the formula for y. See Marc’s email in the Appendix.
We have fixed G,G∨, and T, T∨ as usual. Let X∗ = X∗(T ), which is

canonically identified with X∗(T
∨).

0.1 Maps of the Weil group

Give (y, λ) satisfying:

1. λ ∈ X∗ ⊗ C,

2. y ∈ NormG∨Γ−G∨(T∨),

3. y2 = exp(2πiλ)

Define φ by

1. φ(z) = zλzyλ

2. φ(j) = exp(−πiλ)y.

The first line is shorthand for φ(ew) = exp(wλ+ ywλ).
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0.2 Character of covers of T (R)

Fix γ ∈ 1
2
Z∗. Then the two-fold cover Tγ of the complex torus T is defined.

It is an abelian algebraic group; its identity component is a torus of index 1
or 2. In our applications we often have γ = ρ.

If θ is a Cartan involution of T satisfying θγ − γ ∈ X∗ then the inverse
image T (R)γ of the real form T (R) of T defined by θ is defined.

Fix θ and (λ, κ) satisfying:

1. λ ∈ X∗ ⊗ C,

2. κ ∈ (γ +X∗)/(1− θ)X∗,

3. λ+ θλ = κ+ θκ

In (2) we identify κ with a representative in γ + X∗; any formula involving
κ+ θκ is well defined.

Associated to (λ, κ) is a genuine character Λ(λ, κ) of T (R)γ. See [2,
Proposition 5.8].

0.3 Characters of tori defined by (y, λ)

Fix γ ∈ 1
2
X∗ as in Section 0.2. Suppose we are given (y, λ, y0) with (y, λ) as

in Section 0.1, y0 in the same fiber as y, and y2
0 = exp(2πiγ). That is:

1. y, y0 ∈ NormG∨Γ−G∨(T∨),

2. yy−1
0 ∈ T∨,

3. λ ∈ X∗ ⊗ C

4. y2 = exp(2πiλ),

5. y2
0 = exp(2πiγ).

Assume θ is a Cartan involution of T satisfying θt = −Ad(y). This defines
a character Λ[y, λ, y0] of Tγ(R) as follows. By (2) choose τ ∈ X∗⊗C satisfying
y = exp(2πiτ)y0, and let

(1) κ = λ− (τ − θτ).
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We check that conditions (1-3) in Section 0.2 hold. It is obvious that another
choice of τ modifies κ by an element of (1− θ)X∗, and λ+ θλ = κ+ θκ. Also

(2)

exp(2πiκ) = exp(2πi(λ− τ + θτ)

= y2exp(2πi(−τ + θτ))

= exp(2πi(τ + θ∨τ))y2
0exp(2πi(−τ + θτ))

= y2
0 = exp(2πiγ).

We can therefore define

(3) Λ[y, λ, y0] = Λ(λ, κ)

0.4 Formula for y

The main point is now a formula inverting (3): given (λ, κ) and y0, give a
formula for y, so that Λ[y, λ, y0] = Λ(λ, κ).

To spell things out, suppose we are given (θ, γ, λ, κ) satisfying

1. γ ∈ 1
2
X∗,

2. γ − θγ ∈ X∗,

3. λ ∈ X∗ ⊗ C,

4. κ ∈ γ +X∗/(1− θ)X∗

5. λ+ θλ = κ+ θκ.

Then the genuine character Λ(λ, κ) of Tγ(R) is defined as in Section 0.2.
Fix y0 ∈ NormG∨Γ−G∨(T∨) so that θt = −Ad(y) satisfying

(4) y2
0 = exp(2πiγ).

Then there exists y satisfying

1. y ∈ NormG∨Γ−G∨(T∨),

2. y2 = exp(2πiλ),

3. yy−1
0 ∈ T∨
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so that Λ[y, λ, y0] is defined, and

(5) Λ[y, λ, y0] = Λ(λ, κ).

We want a formula for y.
Set y = exp(2πiµ)y0, and solve for µ. By (1) we need to choose µ so that

(6) κ = λ− (µ− θµ).

This is equivalent to κ− λ = µ− θµ, and this is possible since by (5)

(7) λ− κ = −θ(λ− κ).

In fact we can set

(8)
µ =

1

4
((λ− κ)− θ(λ− κ))

=
1

2
(λ− κ).

We check this:

(9)

λ− (µ− θµ) = λ− 1

2
((λ− κ)− θ(λ− κ))

= λ− 1

2
(2(λ− κ)) by (7)

= λ− (λ− κ) = κ

as desired.
This proves:

Lemma 10 Fix θ, γ, and suppose (λ, κ) are given, so Λ(λ, κ) is a genuine
character of Tγ(R). Fix y0 satisfying y2

0 = exp(2πiγ) and θt = Ad(y). Let

(11) y = exp(πi(λ− κ))y0.

Then Λ(λ, κ) = Λ[y, λ, y0].

In particular:

Lemma 12 Suppose we are in the usual atlas setting, with integral infinites-
imal character. Fix (x, y) ∈ Z. Let τ∨ = p(y), the twisted involution defined
by y. Fix y[τ∨] also lying over τ∨, satisfying y[τ∨]2 = exp(2πiρ).

Let y = exp(πi(λ− κ))y[τ∨]. Then

(13) Λ(λ, κ) = Λ(y, λ, y0).
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Note this holds for any y[τ∨] with the correct square. While this gives
a well defined genuine character of Tγ(R), we need to choose y[τ∨] more
carefully; this is the basepoint issue.

In this setting λ is always dominant, and this formulation gives a dom-
inant character of Tγ(R). This may get moved by an element of the Weyl
group when making an actual standard representation.

I’ve used my terminology to avoid going crazy. Marc uses different con-
vention:

my (λ, κ) are Marc’s (γ, λ), and he chooses y[τ∨] = σwδ1, so in his terms
we have

y = exp(πi(γ − λ))σwδ1

which agrees with what he wrote in his email (see the appendix).

0.5 Basepoint

Fix basic data (G, γ) (γ is an involution in Out(G)), and then define GΓ and
X as usual. Recall IW is the involutions in W Γ. For τ ∈ IW Xτ denotes the
fiber of τ . The basepoint issue is: for each τ we need to canonically choose an
element x[τ ] ∈ Xτ . This must satisfy certain properties, ultimately coming
down to [2, Proposition 6.30].

We first show there is a canonical way to pick {x[τ ]}, and then show these
satisfy the required properties.

Recall we have fixed a pinning datum (B, T, {Xα}. For α a simple root

let σα denote the corresponding element of the Tits group W̃ . If w ∈ W let
σw be its canonical lift to the Tits group.

Remark 14 There is a dangerous bend here. For α simple we have defined
σα; we have also defined σsα ; and these are equal. If α is not simple then
σsα is defined, by σα is not, and writing σα for a non-simple root can cause
confusion or even (gasp!) mistakes.

Lemma 15 Fix τ and any element x ∈ Xτ . If α is a simple τ -complex root
define x[sατs

−1
α ] = sα×x. Repeating this process gives a well-defined element

in each fiber Xτ ′ for τ ′ in the conjugacy class of τ .

Recall sα × x = σαxσ
−1
α . Also recall the conjugacy class of τ corresponds to

a conjugacy class of Cartan subgroups of the quasisplit form.
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Proof. Suppose α1, . . . , αn is a sequence of simple roots, such that α1 is
τ -complex, α2 is sα1τ -complex, and so on. Also suppose w = sα1 . . . sαn
satisfies wτw−1 = τ , i.e. w ∈ W τ . It is enough to show wxw−1 = x.

Let ρi(τ), ρr(τ) be the half sums of the τ -imaginary and τ -real roots,
respectively. Let WC(τ) = StabW (ρi(τ), ρr(τ)).

Let α = α1. If β is τ -imaginary then (sατsα)(sαβ) = sατβ = sαβ, so sαβ
is sατsα-imaginary. Since α is simple and complex β > 0 implies sαβ > 0.
Similarly for real roots, so

(16) sα(ρi(τ)) = ρi(sατsα), sα(ρr(τ)) = ρi(sατsα)

Applying this repeatedly we conclude wρi(τ) = ρi(wτw
−1) = ρi(τ) since

w ∈ W τ . Similarly for ρr(τ), so w ∈ WC(τ). Also w ∈ W τ , so w ∈ WC(τ)τ .
By [1, Proposition 12.16] WC(τ)τ acts trivially on Xτ , proving the result. �

Remark 17 This gives an algorithm to choose of x[τ ′] for all τ ′ in a conju-
gacy class once we’ve picked a single x[τ ].

Cayley transforms require just a little more thought. We start on the
fundamental fiber.

Definition 18 Recall δ is a fixed element of GΓ, and we use the same nota-
tion for the corresonding elements of X and of IW .

Define

(19)(a) mρ∨ = exp(πiρ∨), zρ = m2
ρ∨ = exp(2πiρ∨) ∈ Z(G).

Define the basepoint in Xδ to be:

(19)(b) x[δ] = exp(πiρ)δ.

Since we make repeated use of this element we define

(19)(c) δ1 = exp(πiρ)δ.

Recall exp(πiρ)δ is a particularly important element; see [2, 9.7(b)]. In par-
ticular every simple δ-imaginary root is non-compact with respect to x[δ] (the
corresonding Borel is large) and x[δ]2 = zρ.
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By the Lemma this defines x[τ ] for all τ conjugate to δ (this is a singleton in
the equal rank case). Marc suggest defining x[τ ] in general as follows.

Definition 20 Given τ ∈ IW , write τ = wδ ∈ IW = 〈W, δ〉 (recall wθδ(w) =
1). Let σw be the canonical lift of w to the Tits group. Let x[τ ] = σwδ1.

This definition has several remarkable properties. First of all it is consis-
tent with Lemma 12.

Lemma 21 If α is a simple τ -complex root then sα × x[τ ] = x[sατsα]. In
particular this definition of x[τ ] is consistent with the algorithm of Remark
17.

Proof. Write τ = wδ, and let β = τ(α), so sα(wδ)sα = sαwsβτ . Without
loss of generality we may assume (after switching w and sαwsβ if necessary)
that `(sαwsβ) > `(w), so sαwsβ is a reduced expression. We have to show

(22) σα(σwmρ∨δ)σ
−1
α = (σαwσβ)mρ∨δ

(careful with the inverses here, they are correct). Recall σ2
α = exp(πiα∨),

and we denote the latter element mα. Then σ−1
α = σαmα, and the left hand

side is

(23)

σα(σwmρ∨δ)σ
−1
α = σασwmρ∨δσαmα

= σασwmρ∨σβmβδ

= σασwσβ(σ−1
β mρ∨σβ)mβδ

Now (σ−1
β mρ∨σβ)mβ = exp(πi(ρ∨ − β∨))exp(πiβ∨) = mρ∨ . Plugging this in

gives the right hand side. �

Let α be τ -imaginary root, and assume it is non-compact with respect to
x[τ ]. Then the Cayley transform cαx[τ ] is defined. See [1, Definition 14.1].
In fact

(24) cαx[τ ] = σαx[τ ].

We are being a little sloppy here. Recall X̃ is a subset of GΓ, and X is the
quotient of X̃ by conjugation by H. See [1, Section 9]. We are identifying

X with a subset of representatives in X̃ . This is legitimate: if ξ ∈ X̃ repre-
sents x ∈ X , and α is x-non-compact-imaginary, then σαξ represents cαx [1,
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Lemma 14.2]. Note that this is not necessarily true for real (inverse) Cayley
transforms.

In any event we have:

Lemma 25 Suppose α is a τ -imaginary root, which is non-compact imagi-
nary with respect to x[τ ]. Then

(26) x[sατ ] = cαx[τ ].

Proof. Suppose τ = wδ. We have to show x[sαwτ ] = σαx[wτ ], or σsαwδ1 =
σασwδ1, i.e. σsαw = σασw. This comes down to the fact that `(sαw) > `(sα)
since α is simple and τ -imaginary (right, Marc?). �

This gives a strong property of the basepoints. Start at x[δ], and apply
any sequence of simple complex cross actions and non-compact imaginary
Cayley transforms. The result will be a basepoint.

What is left is to confirm this satisfies the requirements of [2, Proposition
6.30]. To be continued. . .

0.6 Appendix

Subject: Re: minor matters
From: "Marc van Leeuwen" <Marc.van-Leeuwen@math.univ-poitiers.fr>
Date: Thu, November 5, 2009 7:51 am

...

First the identification of the parameters (what is a bit confusing is that all
of them have several "components", some of which overlap with those of others).
There is a strong involution (actually given as KGB element) x, which has as
component an involution theta of the root datum (the other part, the torus part
of x, will play no role for y). Then there is the discrete parameter lambda,
which is a character of the rho-cover of the real Cartan at theta (please
correct me if the wording is wrong) and lies in rho+X^* and is defined modulo
(1-theta)X^*; one can distinguish the free part of lambda (determined by
(1+theta)lambda) and the torsion part of lambda, although the decomposition may
not be mathematically very meaningful. Finally there is the parameter gamma,
taken as a rational weight, which is a representative of the infinitesimal
character; it has a discrete part (projection on +1 eigenspace of theta) that
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is bound to the free part of lambda by the relation (1+theta)(gamma-lambda)=0,
and a continuous part (projection on -1 eigenspace of theta) that is also known
as nu. I suppose that the Weyl group can act on everything to give an
equivalent set of parameters, but this aspect confuses me because (1) the
formulas seem to depend on choosing definite representatives and (2) if we are
going to determine a block element (x,y) then certainly we cannot operate by
cross actions on x (and y) and hope to get an equivalent block element;
therefore I will ignore any W action and suppose (x,lambda,gamma) is fixed.

What I need is a formula to find y associated to these parameters, in the form
y = t.sigma_w.delta where t is a dual torus element whose square is central in
G^\vee(\gamma), the dual group whose root system is the subsystem of the coroot
system of G integral on gamma (this means that all coroots integral on gamma
should have values plus or minus 1 on t); sigma_w is the canonical lift of a
twisted involution in the dual Tits group (in fact w is determined by theta),
and \delta is some fixed basic involution of G^\vee. In order to have a formula
with some chance of being valid I take \delta_1=exp(i\pi\rho)\delta_0 with
delta_0 the pinning-preserving involution of G^\vee (never mind whether that
makes sense). This choice makes sigma_w.delta_1 the base-point for the dual
fiber. The formula I propose is

y = exp(i\pi(gamma-lambda)) . sigma_w.delta_1

There are a number of sanity checks that this formula seems to pass. The square
of y should be exp(2i\pi(\gamma)); I think I checked that by computation in the
Tits group of G^\vee (more or less). Then y should encompass the torsion
information of lambda (because that is what lives in the dual fiber group that
atlas uses to compute with y); note that taking the difference gamma-lambda
precisely ignores the free part of lambda, and the discrete part of gamma. The
value of y is only meaningful modulo the image of the +1 \Q-eigenspace of
theta^t on \Q\tensor X_* (or the -1 eigenspace of -theta^t if you prefer);
changing just the free part of lambda gives a change precisely in that
direction (this is not really a check, but I find it reassuring nonetheless).

Then we should have coincidence with the formula (4.3) in the sp4forms paper
given at theta=-1 (which implies w=e); that formula has an unspecified binary
parameter epsilon, and setting epsilon = rho-lambda (mod 2X^*) gives my formula
above (this was indeed the starting point for my formula). Finally y should
transform correctly under cross actions and Cayley transforms; since I do not
know how to do these in general at the level of (x,lambda,gamma) I could only
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check that for complex cross actions, where things seem to work well. So I
cross my fingers and hope this is the right formula. (By the way, I must have
mentioned this formula at least twice in previous emails, but with perhaps not
enough explanation).

-- Marc
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