Affine Weyl group and coherent families

David Vogan (Notes by Siddhartha Sahi)

AIM, Monday, July 7, 2008

1 Weyl groups

Let G be a complex reductive group, with dual group G^\vee, Weyl group W, character lattice X^*, and root lattice R
The affine Weyl group is $W^{aff} := W \ltimes R$
The extended affine Weyl group is $W^{ext} := W \ltimes X^*$
They act on X^*, $\mathfrak{h}_R^* := X^* \otimes_{\mathbb{Z}} \mathbb{R}$, and $\mathfrak{h}^* := X^* \otimes_{\mathbb{Z}} \mathbb{C}$

$W^{aff}/W^{ext} \approx X^*/R \approx$ algebraic characters of $Z(G)$
\mathfrak{h}_R^*/W^{aff} is the fundamental alcove
$\mathfrak{h}^*/W^{ext} \leftrightarrow$ conjugacy classes of semisimple elements in G^\vee
$\mathfrak{h}^*/W \leftrightarrow$ characters of $Z(g)$ (Harish-Chandra isomorphism)

2 Coherent family

Let Ξ be an X^*-coset in \mathfrak{h}^*/X^*.
A coherent family for $G_\mathbb{R}$ based on Ξ is a map
$\Theta : \Xi \to \{\text{virtual representations of } G_\mathbb{R}\}$ such that

1. $\Theta (\xi)$ has infinitesimal character ξ, for all ξ in Ξ
2. for any finite dimensional representation F of G we have
 $F \otimes \Theta (\xi) = \sum_\mu m_F(\mu) \Theta (\xi + \mu)$
 where $m_F(\mu)$ is the multiplicity of the weight μ in F.

The set of all such Θ forms a \mathbb{Z}-module $CF(\Xi)$.
[More generally we can consider coherent families with values in other categories of representations]

Problem 1 Define a W^{aff} representation on $CF(\Xi)$
3 \(W \) action

Given \(w \in W \) and \(\Theta \) in \(CF(\Xi) \), define
\[
(w\Theta)(\xi) := \Theta(w^{-1}\xi) \quad \text{for} \quad \xi \in \Xi
\]
Then \(w\Theta \) is a coherent family based on \(w\Xi \)
This defines a \(W \) representation on the sum of the various \(CF(w\Xi) \) as \(w \) ranges over \(W \)

However, consider the following subgroups of \(W \):
\[
W_{[\Xi]} := \{ w \in W : w(\Xi) = \Xi \}
\]
\[
W_{\Xi} := \{ w \in W : w(\xi) - \xi \in R \text{ for some (hence all) } \xi \in \Xi \}
\]
Then these act naturally on \(CF(\Xi) \) itself.
\([W_{\Xi} \text{ is a parabolic subgroup of } W_{aff}, \text{ though not of } W] \)

Let \(s = s(\Xi) \) be the semisimple element in \(H^\vee \subset G^\vee \)
corresponding to the natural map \(h^*/X^* \to h^*/W_{ext} \).
Its centralizer \(G^\vee_s \) is reductive (perhaps disconnected).
Then \(W_{[\Xi]} \) is the Weyl group \(W(G^\vee_s, H^\vee) \) and
we have \(W_{[\Xi]}/W_{\Xi} \approx G^\vee_s/\{\text{identity component}\} \)

4 Associated variety and cycle

Suppose \(\xi_0 \in \Xi \) is regular. The map \(\Theta \to \Theta(\xi_0) \) gives a bijection:
\(CF(\Xi) \to \{ \text{Virtual representations with infinitesimal character } \xi_0 \} \)
Given \(\Theta \) in \(CF(\Xi) \), write \(\Theta(\xi_0) = \sum m_i X_i \), where \(X_i \) are irreducible
The associated variety of \(X_i \) is a union of closures of nilpotent \(K \) orbits
Let \(O_1, \ldots, O_n \) be the maximal such orbits (obtained as \(i \) varies).
This collection is independent of the regular \(\xi_0 \in \Xi \)
Write \(O_j \approx K/K_j \) where \(K_j \) is the stabilizer of some point in \(O_j \).

The associated cycle of \(\Theta \) gives for each \(\xi \) in \(\Xi \),
a virtual representation \(\tau_j(\xi) \) of each \(K_j \).
We define \(\tau_j(\xi) = \sum m_i \tau_{ij}(\xi), \) then we have
\[
\tau_j(\xi) \otimes F = \sum_{\mu} m_F(\mu) \tau_j(\xi + \mu)
\]
We want to compute \(\tau_j(\xi) \); the following result should be useful:

Proposition 2 If \(\phi : X^* \to \mathbb{C} \) is a function satisfying
\[
\dim(F) \phi(\lambda) = \sum_{\mu} m_F(\mu) \phi(\lambda + \mu)
\]
Then \(\phi \) is a harmonic polynomial in \(S(h) \).