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1. Definitions and Background

Let (W, S) be a Coxeter system, and H = H(W, S) the corresponding Iwahori-Hecke

algebra over Z[q±1/2]. For convenience, we let s1, . . . , sn denote the simple reflections

(i.e., S = {s1, . . . , sn}), and T1, . . . , Tn the corresponding generators of H. Recall that

the defining relations of H are the quadratic relations (Ti − q)(Ti + 1) = 0 and the braid

relations.

We define an S-labeled graph to be a triple Γ = (V, m, τ), where

(i) V is a vertex set,

(ii) m is a map V × V → {scalars} (i.e., a matrix),

(iii) τ is a map V → {subsets of S}.

The value of τ at a vertex v is referred to as the τ invariant of v.

For reasons that will soon be clear, we will always assume that the scalars in (ii) are

nonnegative integers, but we have been deliberately vague here in recognition of the fact

that there do exist contexts where more flexibility is necessary.

The matrix m implicitly defines a directed graph on the vertex set V ; to emphasize this

interpretation, we will use the notation m(u → v) to refer to the (u, v)-entry of m. One

should regard this as the number of edges directed from vertex u to vertex v.
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Let MΓ denote the Z[q±1/2]-module freely generated by V .

A W -graph is an S-labeled graph Γ such that the following defines an H-module struc-

ture on MΓ:

Ti(v) =

{

qv if i /∈ τ(v),

−v + q1/2
∑

u:i/∈τ(u) m(v → u)u if i ∈ τ(v).
(1)

It is easy to check that the quadratic relations (Ti − q)(Ti + 1) = 0 hold automatically in

this context (presuming of course that the sums are finite); the content of the definition is

that the braid relations hold as well.

Remark 1.1. (a) The matrices defined in (1) are transposed from the ones used in [KL]

as well as in the atlas software. However, it is easy to see that the transpose of any matrix

representation of H is again a matrix representation of H, so the difference is harmless.

The reason we bother to be different is that it seems more natural to have an H-module in

which Ti acts by propagating in the forward direction (i.e., following edges), rather than

the reverse. Another way to fix this problem would be to reverse the conventions on edge

orientation in the atlas documentation.

(b) If we set q = 1, the H-action on MΓ specializes to a W -action, so we can think of

MΓ as an H-module as well as a W -module.

(c) There exist S-labeled graphs such that the operators defined in (1) do not satisfy

the braid relations for generic q, but do satisfy them at q = 1 (thus yielding a W -module).

For further information, see Remark 3.15(b).

It is important to note that if τ(v) ⊆ τ(u), then the value of m(v → u) has no effect on

the operators defined in (1). For this reason, we adopt the convention that

m(v → u) = 0 whenever τ(v) ⊆ τ(u) (2)

for all W -graphs. The atlas also follows this convention.

Remark 1.2. (a) Many of the W -graphs that occur in nature are symmetric; i.e.,

m(u → v) = m(v → u). In light of our convention, we should modify this by saying that

Γ has symmetric edge weights if

m(u→ v) = m(v → u) whenever τ(u) ⊥ τ(v),

where I ⊥ J means that I and J are incomparable (i.e., I 6⊆ J and J 6⊆ I).

(b) Given J ⊂ S and a W -graph Γ, there is an obvious way to define a WJ -graph ΓJ by

restricting the τ invariants to J ; i.e., replacing τ(v) with J ∩ τ(v). Given our convention,

this may also entail deleting edges (replacing certain matrix entries with 0’s). We refer to

ΓJ as a parabolic restriction of Γ.
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A. Cells and subquotients.

Let Γ = (V, m, τ) be a W -graph. When does U ⊂ V span an H-submodule of MΓ?

It is not hard to show that it is necessary and sufficient that U is an “arrow-closed”

subset of V ; i.e., for all u ∈ U and v ∈ V , m(u→ v) 6= 0 implies v ∈ U . (This relies on (2)

in an essential way, and justifies our use of this convention.)

Given that U spans an H-submodule, it follows that the S-labeled subgraphs Γ(U) and

Γ(V −U) induced by U and V −U (with multiplicities and τ invariants inherited from Γ)

are themselves W -graphs, and

MΓ(V −U)
∼= MΓ/MΓ(U).

More generally, given a nested sequence U1 ⊂ U2 ⊂ V of arrow-closed subsets, we call the

W -graph Γ(U2−U1) a subquotient of Γ, the point being that the corresponding H-module

is a subquotient of MΓ.

If Γ has no proper subquotients, then it is called a cell.

We remark that a subset U of V is the vertex set of a subquotient of Γ if and only if

it is “convex” in the sense that for all u, u′ ∈ U , every v ∈ V that occurs along a directed

path from u to u′ also belongs to U .

Now define an equivalence relation on V by declaring u ∼ v if there are directed paths

in Γ from u to v and v to u. In the graph theory literature, the equivalence classes

are known as the strongly connected components of the graph Γ. It is clear that these

equivalence classes are convex in the above sense, and moreover, these are the (unique)

smallest subquotients of Γ: if u ∼ v, then u and v must appear together or not at all in

every subquotient of Γ.

Thus Γ is a cell if and only if Γ is strongly connected.

Note that for every W -graph Γ, the H-module MΓ has a “composition series” of H-

submodules in which the intermediate quotients are (isomorphic to) the modules MΓ(U),

where U ranges over the strongly connected components of Γ.

Remark 1.3. The H-modules corresponding to cells need not be irreducible. This

persists for the W -modules one obtains at q = 1 (even for finite Weyl groups, where

complete reducibility of W -modules over Q is available).

B. Duality.

The dual of an S-labeled graph Γ = (V, m, τ) is the S-labeled graph Γ∗ = (V, m∗, τ∗),

where m∗(u→ v) := m(v → u) and τ∗(v) := S − τ(v) (i.e., reverse all edges and comple-

ment all τ invariants).

We have not checked in detail whether it is true that the dual of every W -graph is also a

W -graph. A cautionary indication that this does require checking is that if we only require

the braid relations to hold for Γ at q = 1, then these relations need not hold for Γ∗. The

example discussed in Remark 3.15(b) has this property.
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We could fix this defect by negating the edge weights of Γ∗. Indeed, if we modify

the definition of Γ∗ by setting m∗(u → v) := −m(v → u), then it is not hard to show

that the action of Ti on MΓ∗ can be obtained by twisting the action of Ti of MΓ by the

automorphism of H that sends Ti → −q−1Ti and q → q−1. At q = 1, this corresponds to

twisting by the sign representation of W . However, this takes us outside of the class of

W -graphs with nonnegative edge weights.

On the other hand, many of the W -graphs that occur in nature are bipartite; i.e., the

vertices may be partitioned into two sets, say V0 and V1, such that m(u → v) 6= 0 only

if (u, v) ∈ (V0 × V1) ∪ (V1 × V0). Given such a bipartition, the diagonal change of basis

v 7→ ±v (with sign depending only on membership of v in V1) has the effect of negating the

edge weights of Γ. Thus Γ̄ = (V,−m, τ) is also W -graph, and MΓ̄
∼= MΓ (as H-modules).

It follows that if Γ is a bipartite W -graph, then so is Γ∗.

C. The Kazhdan-Lusztig-Vogan story.

The (one-sided) W -graphs constructed by Kazhdan and Lusztig in [KL] are defined by

taking V = W , τ(v) = {i : `(siv) < `(v)}, and

m(u→ v) := µ(u, v) + µ(v, u),

where µ(u, v) is defined to be the coefficient of q(`(v)−`(u)−1)/2 in the Kazhdan-Lusztig

polynomial Pu,v(q). In particular, either µ(u, v) = 0 or µ(v, u) = 0 (often both).

Note that the above definition should be modified to fit (2); Kazhdan and Lusztig

do not follow our convention (and their W -graphs are not directed). In any case, after

modification, these W -graphs will be edge-symmetric in the sense of Remark 1.2.

Assuming (W, S) is finite or crystallographic, one knows that Pu,v(q) has nonnegative

integer coefficients, so these W -graphs have nonnegative integer edge weights.

Since Kazhdan-Lusztig polynomials are polynomials in q (rather than q1/2), it follows

that µ(u, v) and m(u → v) can be nonzero only if the lengths of u and v have opposite

parity. Therefore, these W -graphs are bipartite.

For each real Lie group G whose complex form has Weyl group W , Vogan has con-

structed more general (but similar) W -graphs on each block of irreducible representations

of G; one block occurs for each choice of a real form for the dual group. The edge weights

for the W -graph of a block are obtained from leading coefficients of certain Kazhdan-

Lusztig-Vogan polynomials. Again, one knows that these polynomials have nonnegative

integer coefficients, and the corresponding W -graphs are bipartite.

See also [LV] and the notes for Barbasch’s lecture at Atlas IV [B].

The atlas command for describing the contents of a block is block; the command

wgraph describes its W -graph, and wcells describes its partition into cells.

Assuming that W is a finite Weyl group, we define a W -graph to be natural if it occurs

as a subquotient of one of the above block W -graphs, or a parabolic restriction of such a

graph. This includes the Kazhdan-Lusztig W -graph as a special case by taking G to be a

complex semisimple Lie group, viewed as a real Lie group.
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2. Goals/Problems

Our main goal is to understand the structure of natural W -graphs.

Working Hypothesis 2.1. The class of natural W -graphs should be fairly rigid.

It may be unrealistic to ask for an explicit description of all natural W -graphs, or even

natural cells, but a direct combinatorial algorithm for generating cells (not involving the

computation of Kazhdan-Lusztig polynomials) may be within reach.

As evidence in support of the rigidity hypothesis, we have run the atlas on most (all?)

real forms of E6, and obtained only 20 distinct natural cells up to isomorphism. For E7,

the analogous number we obtained is 42. It will be interesting to add complex E6 to the

picture, as well as the real forms of E8.

Question 2.2 (Algebraic versus Combinatorial Isomorphism). Is it true that natural

W -cells are isomorphic if and only if the corresponding W -modules are isomorphic?

A positive answer to this question would strongly support our Working Hypothesis. It is

also worth noting that the modules generated by the 20 isomorphism classes of W (E6)-cells

and 42 W (E7)-cells we have identified are all distinct.

Goal 2.3: Cell Synthesis. Given some fragment of a cell or W -graph (possibly

void), construct all ways to complete it within an appropriate class of W -graphs.

It is interesting to speculate that all natural cells occur in the blocks of split real groups

(but a recent email from Vogan indicates that this fails for E8). If true, this could be a big

win computationally, since it is far easier to compute the blocks and cells of split groups

by “honest” methods (i.e., atlas) than it is do the same for (say) the complex groups.

In any case, it would be very interesting if we could determine the cells or full W -graph

for complex E8 by synthetic methods, since the direct calculation of all Kazhdan-Lusztig

polynomials for complex E8 is not feasible without major advances in the theory.

Question 2.4 (Compressibility). Given the W -graph Γ of a block or cell, understand

how to specify the reconstruction of Γ from a parabolic restriction ΓJ for some J ⊂ S.

For cells, the W -modules MΓ tend to have a very small number of irreducible con-

stituents, and one can usually choose J so that branching from W to WJ is multiplicity-free,

so it is reasonable to speculate that natural cells have very short recursive descriptions.

Goal 2.5. Can we explain the counterexample of McLarnan and Warrington without

using Kazhdan-Lusztig polynomials?

This refers to the fact that there exist natural W (An)-cells with edge multiplicities > 1;

the lowest rank in which such cells occur is n = 9 (see [MW]).
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3. Admissible W -Graphs

We define an S-labeled graph Γ = (V, m, τ) to be admissible if it

(A1) has nonnegative integer edge weights,

(A2) is edge-symmetric (i.e., m(u→ v) = m(v → u) if τ(u) ⊥ τ(v)),

(A3) has a bipartition.

The point of this definition is that we know that every natural W -graph is admissible; if

an admissible W -graph is not natural, then we say that it is synthetic.

Of course the above definition makes sense for any Coxeter system (or without any

Coxeter system whatsoever), but we are only interested in admissible W -graphs for finite

Weyl groups, so that natural W -graphs exist as we have defined them. We should probably

also add the hypothesis that Γ is finite, although this would not be reasonable if we were

considering (say) affine Weyl groups.

Remark 3.1. By work of Gyoja [G], it is known that for every finite Weyl group W ,

every irreducible W -module occurs as MΓ for some W -graph Γ. (See also the explicit

constructions for the exceptional groups obtained by Howlett and Yin [HY].) However, it

should be noted that in general, these W -graphs require negative (integer) edge weights

and are not edge-symmetric. For example, one cannot realize the reflection representation

of W (B2) in an edge-symmetric way. So these W -graphs are not admissible.

Working Hypothesis 3.2. The class of admissible W -cells should be fairly rigid.

It is important to keep in mind that this hypothesis is not reasonable without some sort

of assumptions about W . In the extreme case, if (W, S) is a free Coxeter system (so that

sisj has infinite order for all i 6= j), then there are no braid relations, and every S-labeled

graph is a W -graph.

However, assuming that W is a finite Weyl group, we expect that there should be

relatively few synthetic W -cells. (Examples later.)

Question 3.3. Does each finite Weyl group have only finitely many admissible cells?

Now suppose that (W, S) is simply-laced, not necessarily finite.

In the following, we describe five simple rules that characterize when an admissible

S-labeled graph is a W -graph (i.e., the operators in (1) satisfy the braid relations).
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A. The Compatibility Rule and the Simplicity Rule.

An S-labeled graph Γ = (V, m, τ) is a W -graph if and only if all of its rank two parabolic

restrictions Γ{i,j} are 〈si, sj〉-graphs (i.e., Ti and Tj satisfy the appropriate braid relation).

For I ⊆ {i, j}, let VI denote the set of vertices of Γ whose τ invariant is I when restricted

to {i, j} (i.e., τ(v) ∩ {i, j} = I). Assuming that Γ{i,j} is an 〈si, sj〉-graph, convention (2)

implies that the only possible edge orientations in Γ{i,j} are as follows:

V{i,j}

V{i} V{j}

V∅.

In particular, note that V{i} ∪ V{j} necessarily spans a subquotient of Γ{i,j}. Letting A

and B denote the respective (nonnegative integer) matrices encoding the multiplicities of

edges from V{i} to V{j} and V{j} to V{i}, we claim that having the braid relation involving

Ti and Tj hold on the span of V{i} ∪ V{j} translates into a simple condition on A and B:

(R2) If TiTj = TjTi, then A = 0 and B = 0.

(R3) If TiTjTi = TjTiTj , then AB and BA are identity matrices.

(R4) If (TiTj)
2 = (TjTi)

2, then ABA = 2A and BAB = 2B.

(R6) If (TiTj)
3 = (TjTi)

3, then
ABABA− 4ABA + 3A = 0,

BABAB − 4BAB + 3B = 0.

In particular, (R2) implies that there cannot be edges between V{i} and V{j} in either

direction if Ti and Tj commute. Translating this into a more direct statement about the

structural features of Γ yields

Fact 3.4 (The Compatibility Rule). If (V, m, τ) is a W -graph, then for all u, v ∈ V

such that m(u→ v) 6= 0, every i ∈ τ(u)− τ(v) must be bonded to every j ∈ τ(v)− τ(u).

We use the term “bonded” here to mean that nodes i and j are adjacent in the diagram

of (W, S); i.e., TiTj 6= TjTi.

Remark 3.5. (a) The Compatibility Rule is valid for all W -graphs; we have used

nothing (so far) about admissibility or being simply-laced.

(b) When τ(u) and τ(v) are comparable, the Compatibility Rule is vacuous.

For braid relations of length 3, note that (R3) is equivalent to having A and B be

square matrices that are inverses of each other. This immediately shows that the problem

of classifying W -cells, even in the A2 case, is not reasonable without further assumptions.
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Indeed, every choice of A ∈ SLm(Z) leads to a bipartite W (A2)-graph with 2m vertices.

Generically, this graph will be a cell with both positive and negative edges weights.

However, if Γ is admissible, then A and A−1 must be nonnegative integer matrices, and

it is not hard to show that this is possible only if A is a permutation matrix. Thus,

Fact 3.6. Assume (V, m, τ) is a W -graph satisfying (A1). If TiTjTi = TjTiTj , then

there must be a bijection φ : V{i} → V{j} such that for all u ∈ V{i} and v ∈ V{j},

m(u→ v) = m(v → u) =

{

1 if v = φ(u),

0 otherwise.

It follows that the only admissible W (A2)-cells are singletons with τ invariant {1, 2} or

∅ and pairs {u, v} with τ(u) = {1}, τ(v) = {2} and m(u→ v) = m(v → u) = 1.

Now assume that (W, S) is simply-laced, and consider the possible edge multiplicities

involving a pair of vertices u, v ∈ V in some W -graph Γ with nonnegative integer edge

weights. If τ(u) ⊂ τ(v), then we know that there can only be edges in the direction v → u.

We say that such edges are arcs.

Otherwise, if τ(u) and τ(v) are incomparable, then there is at least one i ∈ τ(u)− τ(v)

and one j ∈ τ(v)− τ(u). By the Compatibility Rule, i and j must be bonded, so Fact 3.6

implies that there are no edges between u and v, or there is exactly one in each direction.

In the latter case, we say that there is a simple edge between u and v. Summarizing,

Fact 3.7 (The Simplicity Rule). If (W, S) is simply-laced then every W -graph (V, m, τ)

satisfying (A1) consists of arcs and simple edges; i.e., for u, v ∈ V such that m(u→ v) 6= 0,

either τ(v) ⊂ τ(u) and m(v → u) = 0, or τ(u) ⊥ τ(v) and m(u→ v) = m(v → u) = 1.

In particular, all such graphs are edge-symmetric.

Note that two vertices connected by a simple edge must belong to the same cell.

Remark 3.8. (a) The matrix equations in (R4) have nonnegative integer solutions that

yield W (B2)-cells that are not edge symmetric, such as

1 2 1 2

Thus outside of the simply-laced case, nonnegativity alone does not imply edge-symmetry.

If we add edge-symmetry to (R4) (i.e., B = AT ), one can show that the only admissible

W (B2)-cells are singletons with any of the four possible τ invariants, and the following:

1 2 1 12 2

Here as elsewhere, an undirected edge represents two edges, one for each direction.
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(b) By classifying the nonnegative integer, edge-symmetric solutions of the matrix equa-

tions in (R6) (and assuming we made no mistakes in the somewhat tricky reasoning), the

only admissible W (G2)-cells other than singletons turn out to be

2

2 2

1

1 1

1

2

1 2 11 2

12 2 1 2

21

It appears that only the 5-vertex cells are natural; the other three are synthetic.

(c) Assuming we made no mistakes in (b), the above classifications show that if all braid

relations in (W, S) have length 2, 3, 4, or 6 (e.g., if W is a finite Weyl group), then the

Simplicity Rule holds for all admissible W -graphs.

Define the compatibility graph Comp(W, S) to be the simple graph with vertex set 2S

(i.e., subsets of S) and an edge between I and J if every i ∈ I − J is bonded to every

j ∈ J − I in the diagram of (W, S). The compatibility graphs for A3, A4 and D4 are

displayed in Figure 1 with the always isolated vertices S and ∅ omitted.

Letting Γsim denote the graph on the vertex set V formed by the simple edges of Γ,

note that the Compatibility Rule may be formulated as follows:

τ is a graph homomorphism Γsim → Comp(W, S). (3)

That is, if {u, v} is a simple edge of Γ, then τ(u) is adjacent to τ(v) in Comp(W, S).

B. The Frontier Rule.

Continuing the hypothesis that (W, S) is simply-laced, the compatibility graph provides

an interesting way to reformulate Fact 3.6. We define the frontier of a vertex v to be the

set of bonds {i, j} in the diagram of (W, S) such that i ∈ τ(v) and j /∈ τ(v). For example

in the A8-diagram

1
a

0
b

1
c

1
d

1
e

0
f

0
g

1,

we have labeled the bonds a, b, c, d, e, f, g, and have replaced the nodes with 0’s and 1’s to

indicate the τ invariant of a vertex v in some W (A8)-graph. In this example, the frontier

of v is the set {a, b, e, g}. If the endpoints of bond a are i and j, with (say) i ∈ τ(v) and

j /∈ τ(v), then Fact 3.6 says that there must be a unique vertex u connected to v by a

simple edge such that i /∈ τ(u) and j ∈ τ(u). Thus,

Fact 3.9 (The Frontier Rule). If (W, S) is simply-laced and v is a vertex in some

W -graph satisfying (A1), then for each bond {i, j} in the frontier of v, there is a unique

neighbor u of v (connected by a simple edge) such that {i, j} is in the frontier of u.

Conversely, the Compatibility Rule shows that every Γsim-neighbor u of v shares a

nonempty set of bonds in their respective frontiers; namely, the bonds {i, j} such that
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a b
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ba
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1 2 3 4
a cb

124123

13
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12

23

14

24

134
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234

34

4

b ac

b b

abbc
a c

ac
ab bc

ba c

0

1 2

3

c

ba

023 013 012

123

0203 01

23 13 12

0

1 2 3

ab

a b c

ac bc

b b

aa

c c

abacbc

a b c

abc

Figure 1: Diagrams and compatibility graphs for A3, A4, and D4.

i ∈ τ(v)− τ(u) and j ∈ τ(u)− τ(v). Thus we can edge-color Γsim by assigning to (simple)

edge {u, v} the set of bonds shared by the frontiers of u and v. The Frontier Rule says

that the sets of bonds distributed to the various edges incident to a vertex v by this edge

coloring must form a partition of the frontier of v.

Noting that frontiers depend only on τ invariants, this edge coloring of Γsim descends to

the compatibility graph; i.e., if {u, v} is a simple edge, then the set of bonds shared by the

frontiers of u and v depends only on τ(u) and τ(v). We have illustrated this in Figure 1,

where each edge in Comp(W, S) has been labeled by the appropriate subset of bonds in

the diagram of (W, S).

For example, consider the vertex {1, 3} in Comp(A4) (see Figure 1). A vertex v in Γ
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23

23 24

14

13

24

14

13

34

34

12

12

Figure 2: Not a W (A4)-graph.

with τ invariant {1, 3} has frontier {a, b, c}, and the Frontier Rule says that the simple

neighborhood of v must consist of vertices that “share” these three bonds, without over-

lap. Examining the neighborhood of {1, 3} in Comp(A4), we conclude that the simple

neighborhood of every vertex of Γ with τ invariant {1, 3} has one of three forms:

124

13

23

1312

23

14

13

2

14

Remark 3.10. The three rules we have accumulated so far (Compatibility, Simplicity,

and Frontier) are already quite powerful. For example, by staring at Comp(A3) in Figure 1,

it is not hard to deduce that if Γ is an admissible W (A3)-cell, then Γsim must be a disjoint

union of (perhaps multiple copies of) the following graphs:

21 3 1312 23 1232 13

Of course, a W (A3)-graph may also have arcs u← v such that τ(u) ⊂ τ(v). However, note

that all such arcs must be directed right-to-left among the above graphs, and there are no

inclusions of τ invariants within these graphs, so we conclude that no admissible W (A3)-

cell can have arcs, and the above graphs are the only possible such cells. (Moreover, it is

not hard to check that they are indeed W (A3)-graphs.)

11



C. The Diamond Rule.

Before getting too excited about Remark 3.10, one should keep in mind that (R2)–(R6)

are merely necessary conditions; they do not capture the full power of the braid relations.

Indeed, consider the 4-cycle in the center of Comp(A4) (see Figure 1). By winding

around this cycle one or more times, it is easy to construct arbitrarily large S-labeled

graphs that are admissible and satisfy the Compatibility, Simplicity, and Frontier Rules,

such as the graph in Figure 2. However, we shall see that this graph cannot be a W (A4)-

graph; an admissible W (A4)-graph cannot have an 8-cycle (or 12-cycle, etc.) whose τ -image

is the 4-cycle in Comp(A4).

Fact 3.11 (The Diamond Rule). If (V, m, τ) is a W -graph satisfying (A1) and (W, S)

is simply-laced, then for all i 6= j and all v± ∈ V such that i, j ∈ τ(v+) and i, j /∈ τ(v−),

∑

u: i∈τ(u)
j /∈τ(u)

m(v+ → u)m(u→ v−) =
∑

u: i/∈τ(u)
j∈τ(u)

m(v+ → u)m(u→ v−). (4)

That is, the number of 2-step paths from v+ to v− that pass through vertices with i ∈ τ

and j /∈ τ equals the number of such paths through vertices with i /∈ τ and j ∈ τ .

For example, consider one of the vertices in Figure 2 with τ = {2, 4}. There is exactly

one 2-step path from this vertex to each vertex with τ = {1, 3}, and for one of these

vertices, the intermediate vertex has τ = {2, 3}. This violates the Diamond Rule (at i = 2

and j = 4), so the graph is not a W -graph.

Remark 3.12. The Diamond Rule can be used to determine the multiplicities of certain

arcs. For example, consider the following fragment in an admissible W (A5)-graph.

124

125

135

14

b

cd

d

The edge labels indicate which bonds are shared by the frontiers of their endpoints, using

the abbreviations a = {1, 2}, b = {2, 3}, c = {3, 4}, d = {4, 5}. This graph has a 2-step

path {1, 2, 5} → {1, 3, 5} → {1, 4}. Any other 2-step path from {1, 2, 5} to {1, 4} must

pass through the vertex with τ = {1, 2, 4} or else through other vertices in the graph

that are not depicted. Since {1, 4} 6⊂ {1, 2, 5}, these other vertices (if they exist) must be

connected to {1, 2, 5} or {1, 4} by a simple edge (possibly both). However, the frontiers of

{1, 2, 5} and {1, 4} are bd and acd, so by the Frontier Rule, {1, 2, 5} has no other simple

neighbors, and {1, 4} must have exactly one additional simple neighbor that shares the
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Figure 3: A non-bipartite W (A2)-graph. Figure 4: A W (A2)-graph at q = 1 only.

bond a. Inspecting Comp(A5), this extra neighbor necessarily has τ = {2, 4}, and thus

cannot be adjacent to {1, 2, 5} by an arc or simple edge. We conclude that there are no

other 2-step paths from {1, 2, 5} to {1, 4}. Applying the Diamond Rule (with i = 2, j = 5),

it follows that there must be exactly one arc {1, 2, 4} → {1, 4}.

D. The Hexagon Rule.

There is one more graph-theoretic implication for braid relations of length 3.

Fact 3.13 (The Hexagon Rule). Assume (V, m, τ) is a W -graph satisfying (A1).

If TiTjTi = TjTiTj , then for all v± ∈ V such that i, j ∈ τ(v+) and i, j /∈ τ(v−), we have
∑

u∈Vi/j

m(v+ → u)m(φ(u)→ v−) =
∑

u∈Vi/j

m(v+ → φ(u))m(u→ v−), (5)

where Vi/j := {u ∈ V : i ∈ τ(u), j /∈ τ(u)}, and φ(u) denotes the unique vertex in Vj/i

connected to u ∈ Vi/j by a simple edge (as guaranteed by the Frontier Rule).

In other words, the number of 3-step paths from v+ to v− whose middle step follows a

simple edge from Vi/j to Vj/i equals the number of such paths whose middle step follows

a simple edge from Vj/i to Vi/j .

Theorem 3.14. If (W, S) is simply-laced, then an S-labeled graph with nonnegative

integer edge weights is a W -graph if and only if it satisfies

(a) the Compatibility Rule (Fact 3.4),

(b) the Simplicity Rule (Fact 3.7),

(c) the Frontier Rule (Fact 3.9),

(d) the Diamond Rule (Fact 3.11), and

(e) the Hexagon Rule (Fact 3.13).

Moreover, all such W -graphs are edge-symmetric.

Remark 3.15. (a) Not all W -graphs as above are necessarily admissible (i.e., such

graphs may fail to be bipartite). A simple example of this is provided in Figure 3. To

give a cellular example, take W = Aff(A2) and view the diagram of (W, S) as an S-labeled

graph in which node i is assigned τ invariant {i}. Perhaps there are no cellular examples

in case W is a finite Weyl group, but this seems hard to prove.

13
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Figure 5: The generic admissible W (A2)-graph.

13

2 3

24

14

13

134 124

24

234 134 124 1231234

23

12 13 24 34

14

23

4321

Figure 6: Admissible W (A4)-cells.

(b) The (non-bipartite) S-labeled graph in Figure 4 produces operators that satisfy the

braid relations at q = 1, but not for generic q. Note that it violates both the Diamond

and Hexagon Rules.

(c) Using the above characterization, one can show that every admissible W (A2)-graph

is a commutative diagram as in Figure 5. More precisely, each oriented edge (both dotted

and solid) should be viewed as a nonnegative integer matrix defining a map in the indicated

direction, each unoriented edge should be viewed as an identity map, and the condition on

the maps is that the subdiagram formed by the solid edges must be commutative.

(d) Using the above characterization, we have classified all admissible W (A4)-cells and

W (D4)-cells (see Figures 6 and 7). It seems that work of Garfinkle and Vogan [GV] may be

used to show that the two 8-vertex W (D4)-cells are synthetic; the remainder are natural.

Note that the two synthetic cells also have arcs with multiplicity > 1.
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Figure 7: Admissible W (D4)-cells.
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4. Molecules (or Proteins?)

Toward the goal of constructing an algorithm to generate all admissible W -cells, we

have the idea of a two-step process.

First, recognizing that the Compatibility, Simplicity and Frontier Rules provide strong

constraints on the simple edges of a cell Γ, we would like to analyze the connected com-

ponents of Γsim (recall that this denotes the subgraph of Γ formed by its simple edges),

and the subgraphs of Γ that these components induce. We call these induced subgraphs

molecules (or perhaps we should call them proteins), but see below for the precise defini-

tion. Up to this point, we have studied only the simply-laced versions of this problem, but

it is a sensible idea for any finite Weyl group in light of the more general validity of the

Simplicity Rule (see Remark 3.8(c)).

Once we have the ability to generate W -molecules, then we need to analyze the general

problem of determining all possible ways that one or more molecules may be bound together

with arcs to form a cell.

Definition 4.1. Assume (W, S) is simply-laced.

An admissible S-labeled graph Γ = (V, m, τ) is a molecule if it satisfies

(a) the Compatibility Rule (Fact 3.4),

(b) the Simplicity Rule (Fact 3.7),

(c) the Frontier Rule (Fact 3.9),

(d) the Localized Diamond Rule; i.e., (4) holds when τ(v−) 6⊂ τ(v+).

(e) the Localized Hexagon Rule; i.e., (5) holds when there exists k, l ∈ τ(v−)− τ(v+)

such that i and k are not bonded, and j and l are not bonded,

and Γsim is connected.

The point of the above definition is the following.

Fact 4.2. If (W, S) is simply-laced and Γ is an admissible W -cell, then the subgraph

of Γ induced by each connected component of Γsim is a molecule.

Given that Γ is an admissible W -cell, it is easy to see that (a), (b), and (c) must hold

automatically for any connected component of Γsim. For (d), note that in every 2-step

path from v+ to v−, the intermediate vertex could belong to another component only if

both steps of the path are arcs, and of course this requires τ(v−) ⊂ τ(v+). The necessity

of (e) follows by similar reasoning.

Remark 4.3. (a) It should be emphasized that a molecule may have arcs. Moreover,

if one is given only the simple edges of a molecule Γ, one may regard the arc multiplicities

within Γ (i.e., m(u → v) for all u, v such that τ(u) ⊃ τ(v)) as indeterminates, and view

the Localized Diamond and Hexagon Rules as providing a system of equations in these

variables. It is interesting to note that these equations turn out to be linear.

(b) One of the difficulties of this approach to studying admissible cells is that we have

introduced yet another level of artifice: not all molecules can occur inside cells. For

16



example, it is not hard to show that for each m > 1 there is a 6m-cycle that forms a

W (D4)-molecule, but in examining Figure 7, one sees that the only cycles that occur as

molecules in admissible W (D4)-cells are 6-cycles and 12-cycles.

5. Computation (Cell Synthesis)

We have been developing software to generate molecules, but what we have at this point

is code that imposes only a subset of the defining features of molecules (only parts of the

Local Diamond Rule are implemented, and the Local Hexagon Rule is completely ignored).

Nevertheless, the results so far do seem promising, even if the code is not ready for public

consumption.

One general comment about computation we would like to make is that even though

the existence of a bipartition (axiom (A3)) has not played an essential role in these notes,

it is of central importance when the topic turns to algorithms.

To explain, one needs to begin with the observation that any bipartite graph Γ = (V, E)

may be viewed as a ranked poset. One fixes a base vertex v0 ∈ V and introduces a function

r : V → Z by defining r(v) to be the distance from v to v0. Having a bipartition (no odd

cycles) is precisely the condition one needs to guarantee that adjacent vertices have r-

values that differ by ±1. The edges {u, v} of Γ, ordered so that u < v if r(v)− r(u) = 1,

form the covering edges of a poset with rank function r and minimum element v0.

With this in mind, the natural strategy for synthesizing a molecule is to start with a

vertex v0 and chosen τ invariant J (say), and then grow the remainder of the molecule rank

by rank, by judicious use of the Compatibility and Frontier Rules. At various stages there

will be ambiguities when two or more vertices at a given level might need to be identified.

If the Local Diamond and Hexagon Rules cannot resolve the ambiguity, then the process

can be forked, and additional molecules can be grown in parallel.
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