Software Project: Weakly Fair $A_{\mathfrak{q}}(\lambda)$

August 17, 2006

This is a project recommended by David Vogan at the Atlas workshop, July 2006.

Suppose $\mathbf{q} = \mathbf{l} \oplus \mathbf{u}$ is a θ -stable parabolic subalgebra of \mathbf{g} , and \mathbf{h} is a Cartan subalgebra of \mathbf{l} . Suppose $\lambda \in \mathbf{h}^*$ defines a one-dimensional representation of \mathbf{l} , i.e. $\langle \lambda, \alpha^{\vee} \rangle = 0$ for all roots of \mathbf{h} in \mathbf{l} . Fix $\Delta^+ = \Delta^+(\mathbf{h}, \mathbf{g})$ containing $\Delta(\mathbf{h}, \mathbf{u})$, and let $\rho = \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha$ and $\rho(\mathbf{u}) = \frac{1}{2} \sum_{\alpha \in \Delta(\mathbf{h}, \mathbf{u})} \alpha$ as usual. We normalize cohomological induction so $A_{\mathbf{q}}(\lambda)$ has infinitesimal character $\lambda + \rho$.

We say λ is good if

(1)
$$\langle \lambda, \alpha^{\vee} \rangle > 0 \text{ for all } \alpha \in \Delta^+$$

and is *weakly fair* if

(2)
$$\langle \lambda + \rho(\mathfrak{u}), \alpha^{\vee} \rangle \ge 0 \text{ for all } \alpha \in \Delta^+$$

If λ is good then $A_{\mathfrak{q}}(\lambda)$ is non-zero, irreducible, unitary, and has regular integral infinitesimal character. These representations are quite well understood. If λ is weakly fair then $A_{\mathfrak{q}}(\lambda)$ is non-zero, unitary, but not necessarily irreducible. It is of interested to compute this sum: some of these are interesting unitary representations.

That is write

(3)
$$A_{\mathfrak{q}}(\lambda) = \sum_{i} a_{i} \pi_{i}$$

where each π_i is irreducible, and $a_i \in \mathbb{N}$.

Problem: Use the atlas software to compute (3).

Here is a sketch of what is involved.

Fix $\mathbf{q} = \mathbf{l} \oplus \mathbf{u}$ and weakly fair λ .

This is all going on in the block of the trivial representation, so label the parameters in this block $0, \ldots, n$. Write $\pi(i)$ for the irreducible representation with parameter i, and I(i) for the standard representation.

Recall $A_q(0)$ has infinitesimal character ρ and is unitary. It occurs in the output of the blocku command. Find *i* (in the output of blockd or blocku) so that $A_q(0) = \pi(i)$.

Now choose $w \in W$ so that

(4)
$$\langle w(\lambda + \rho), \alpha^{\vee} \rangle \ge 0 \text{ for all } \alpha \in \Delta^+.$$

Next compute

(5)
$$w^{-1} \cdot \pi(i) = \sum_{j \in S} c_j \pi(j)$$

where $S \subset \{0, \ldots, n\}$. Here $w^{-1} \cdot \pi(i)$ is the coherent continuation action. The wgraph command gives the information needed to compute this action. This is carried out by the helper application coherentContinuation at www.liegroups.org/software/helpers (at some point this will be built into atlas itself).

Now list the simple roots β_1, \ldots, β_r such that

(6)
$$\langle w(\lambda + \rho), \beta_k^{\vee} \rangle = 0.$$

Now discard those $\pi(j)'s$ for which some β_k is in the τ -invariant of $\pi(j)$. That is write $S' \subset S$ for the set of $j \in S$ for which

(7) for all
$$1 \le k \le r, \beta_k$$
 is not in the τ invariant of $\pi(j)$

This is available from the output of the block command, see the Appendix. We discard $\pi(j)$ if:

(8) some
$$\beta_k$$
 is of type $ic, r1, r2$, or $C - \text{ for } \pi(j)$

Then we have

(9)
$$A_{\mathfrak{q}}(\lambda) = \sum_{j \in S'} c_j \pi'(j)$$

where

(10)
$$\pi'(j) = \psi^{\rho}_{w(\lambda+\rho)}(\pi(j))$$

the translation of $\pi(j)$ at infinitesimal character ρ to infinitesimal character $\lambda + \rho$. Each $\pi'(j)$ is irreducible, and (by the assumption on the τ -invariant) non-zero.

1 Appendix

We take the opportunity to summarize in one place information about types of roots. Fix a block with parameters $0 \le i \le n$. Recall the cross action is defined on parameters; we write $w \times i = j$.

For each parameter i each simple root is listed by type in the output of **block**:

- i1: α is imaginary, noncompact, and type I, meaning the following equivalent conditions hold:
 - (a) $s_{\alpha} \notin W(G(\mathbb{R}), H(\mathbb{R}))$
 - (b) the Cayley transform c_{α} is single-valued
 - (c) $s_{\alpha} \times i \neq i$
 - (d) this is an $SL(2,\mathbb{R})$ -situation
 - (e) $c_{\alpha}(\alpha)$ is of type r1
- i2: α is imaginary, noncompact, and type II, meaning the following equivalent conditions hold:
 - (a) $s_{\alpha} \in W(G(\mathbb{R}), H(\mathbb{R}))$
 - (b) the Cayley transform c_{α} is double-valued
 - (c) $s_{\alpha} \times i = i$
 - (d) this is a $PGL(2, \mathbb{R})$ situation
 - (e) $c_{\alpha}(\alpha)$ is of type r2
- r1: α is real, satisfies the parity condition, and is type 1, meaning the following equivalent conditions hold:
 - (a) $\alpha(h) \neq -1$ for any $h \in H(\mathbb{R})$,
 - (b) the Cayley transform c^{α} is double valued
 - (c) $s_{\alpha} \times i = i$
 - (d) this is an $SL(2,\mathbb{R})$ -situation
 - (e) $c^{\alpha}(\alpha)$ is of type i1
- r2: α is real, satisfies the parity condition, and is of type 2, meaing the following equivalent conditions hold:

- (a) $\alpha(h) = 1$ for some $h \in H(\mathbb{R})$,
- (b) the Cayley transform c^{α} is single valued
- (c) $s_{\alpha} \times i \neq i$
- (d) this is a $PGL(2, \mathbb{R})$ -situation
- (e) $c^{\alpha}(\alpha)$ is of type i2

rn: α is real, and does not satisfy the parity condition.

- ic: α is imaginary and compact,
- C+: α is complex, and $\theta(\alpha) > 0$
- C-: α is negative, and $\theta(\alpha) < 0$

The roots in the τ -invariant of the irreducible representation $\pi(i)$ with parameter *i* are determined as follows. If α is simple then:

- 1. α imaginary: $\alpha \in \tau(\pi(i)) \Leftrightarrow \alpha$ is compact
- 2. α real: $\alpha \in \tau(\pi(i)) \Leftrightarrow \alpha$ satisfies the parity condition
- 3. α complex: $\alpha \in \tau(\pi(i)) \Leftrightarrow \theta(\alpha) < 0$

In the notation of atlas this means

(11)
$$\tau(\pi(i)): ic, r1, r2, C- not in \tau(\pi(i)): i1, i2, rn, C+$$