
COMPUTING REAL WEYL GROUPS

DAVID A. VOGAN, JR.

Let G be a complex connected reductive algebraic group defined over R. Let H denote a maximal
algebraic torus in G. Write G for the real points of G and H for the real points of H . In applications
to the representation theory of G, the real Weyl group

W (G, H) := NG(H)/H

plays a fundamental role. Meanwhile, it is the complex Weyl group

W (G, H) := NG(H)/H

which is more easily accessible. The point of these notes is to explain how to describe W (G, H) in an
algorithmic way; that is, in the way (roughly) that atlas implements internally. There are perhaps
shortcomings of this approach which are illustrated in an example at the end.

Since NG(H) is clearly defined over R, there is the group of real points:

W (G, H)(R) := [NG(H)/H] (R)

which is intermediate in the sense that

W (G, H) ⊂ W (G, H)(R) ⊂ W (G, H).

The inclusions are all obvious.

Let R = R(G, H) denote the root lattice of H in G and let R∨ = R∨(G, H) denote the coroot
lattice. Given α ∈ R, we obtain a reflection sα of the euclidean space R ⊗Z R which preserves R.
The group W (G, H) is generated by the reflections sα.

Now let θ be a Cartan involution for G. This means, in particular, that θ is an algebraic involution
of G that preserves G so that the fixed points of θ in G are a maximal compact subgroup of G. We
can and do choose θ so that it preserves H. Then θ acts on X∗(H) and X∗(H) and preserves both R
and R∨. Then we have the usual taxonomy of elements α ∈ R:

(C) α is complex if θα /∈ {±α};
(r) α is real if θα = −α (i.e. α(H) ⊂ R);
(i) α is imaginary if θ(α) = α (i.e. α(H) ⊂ iR); moreover:

(n) α is noncompact if θ acts by −1 on the α root space inside g := Lie(G); and
(c) α is compact if θ acts by +1 on the α root space inside g := Lie(G).

These are the only possibilities that can arise. Note that (C), (r), and (i) depend only on θ restricted
to H while (n) and (c) depend on the action of θ on all of G.

The first easy point to note is that

(0.1) W (G, H)(R) = W (G, H)θ.

In atlas θ and the elements of W (G, H) are automorphisms of the lattice X∗(H). That is, they are
integer matrices of size equal to the rank of G.

There is an interesting aside here. One can ask the following question: which θ’s appear? To
answer it, begin by fixed a based root datum (X∗, R+, X∗, (R

∨)+). The “inner class” command in
atlas fixes an involutive automorphism τ of the based root datum. This is an automorphism τ of
X∗ (i.e. a square integer matrix) of order one or two such that τ preserves R+ and its transpose
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preserves (R∨)+. This is an “inner class of real forms of G”. (If G is split, for instance, τ is the
identity.) Consider the semidirect product

W (G, H) o {1, τ}

where τ acts by permuting the simple reflections that generate the complex Weyl group. A twisted
involution is an element of order two in the coset τ · W (G, H). (This is the data that appears in the
last column of the kgb command: the restriction of θ to the nilradical of a representative of the orbit
containing a θ-stable Cartan is an involution.)

Returning to the description of real Weyl groups, (0.1) indicates that we first need to determine
what elements commute with θ. Clearly every reflection in a real or imaginary root does — in fact,
these are the only reflections that do — but there are more elements that do. To get started, let
Rre denote the set of real roots and let Rim denote the set of imaginary roots. Clearly W (Rre) and
W (Rim) commute, so we have

W (Rre) × W (Rim) ⊂ W (G, H)θ.

Fix choices R+
re and R+

im and define

2ρ∨re =
∑

α∈R
+
re

α∨

2ρ∨re =
∑

α∈R
+

im

α∨,

the half-sums of real and imaginary positive coroots. Let

Rcx = {α ∈ R | α(ρ∨re) = α(ρ∨im) = 0},

the set of roots orthogonal to both ρ∨re and ρ∨im. This is a root system (as is easy to check). It is θ
stable since both ρ∨re and ρ∨im are θ stable. A nice reference for the following result is Lemma 3.1 of
IC4.

Lemma 0.2. The root system Rcx decomposes into an orthogonal disjoint union,

Rcx = RL ∪ RR

of subroot systems in such a way that θ is an isomorphism RL → RR of root systems. Thus

W (Rcx) = W (RL) × W (RR)

and

W (Rcx)
θ = {(w, θw) | w ∈ W (RL)} ≃ W (RL) ≃ W (RR).

In particular, W (Rcx)
θ is generated by the products of commuting reflections sαsθα for α ∈ W (RL)

(or W (RR)).

The next result is Proposition 3.12 of IC4.

Proposition 0.3. The subgroup W (Rre) × W (Rim) of W (G, H)θ is normal. Moreover

W (G, H)θ ≃ (W (Rre) × W (Rim)) o W (Rcx).

The atlas software gives each of these terms in the command realweyl. In fact it gives more
information (the finite 2-group “A”) which we now describe.

Set

WR(Rim) = W (Rim) ∩ W (G, H).

Set

Wgr(Rim) = {w ∈ W (Rim) | w preserves compact and noncompact roots};
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equivalently, Wgr(Rim) is the normalizer in W (Rim) of the subroot system Rcpt,im of compact imag-
inary roots. (The subscript gr is meant to stand for “grading”. In IC4 the less-descriptive subscript
2 is used.) Then it is easy to verify that

W (Rcpt,im) ⊂ WR(Rim) ⊂ Wgr(Rim).

Here is the general description of real Weyl groups.

Theorem 0.4. The real Weyl group W (G, H) admits the following description

W (G, H) = [WR(Rim) × W (Rre)] o W (Rcx)
θ.

In general,

Wgr(Rim) = W (Rcpt,im) o B

where B is a product of Z/2’s. It is also true that

WR(Rim) = W (Rcpt,im) o A,

where A is a subgroup of B, and hence also a product of Z/2’s. The rank of this group (and its
generators in W (G, H)) are specified in the realweyl command, thus giving a complete description
of W (G, H).

Let’s look at an example in split E8. Use the following coordinates for the 240 roots inside R8:

±ei ± ej 1 ≤ i 6= j ≤ 8

1

2
(ε1, . . . , ε8) ε ∈ {±1}

8
∏

i=1

= 1.

Suppose θ acts via

θ(x1, . . . , x8) = (−x1, . . . ,−x4, x5, . . . x8).

Then

Rre = {±ei ± ej |1 ≤ i, j ≤ 4} ≃ D4.

Rim = {±ei ± ej |5 ≤ i, j ≤ 8} ≃ D4.

For the “standard” choices, we have

2ρ∨re = (6, 4, 2, 0, 0, 0, 0, 0),

and

2ρ∨im = (0, 0, 0, 0, 6, 4, 2, 0).

So

Rcx = {0, 0, 0,±1, 0, 0, 0,±1)}∪ {
1

2
(ε1,−ε1,−ε1, ε2, ε3,−ε3,−ε3, ε4)} ≃ A2 × A2,

and the conclusion of Lemma 0.2 is nicely illustrated,

W (Rcx)
θ ≃ W (A2).

Notice that Rcx has 12 elements while there are 240 − 24 − 24 = 192 complex roots in R.

From Proposition 0.3, we conclude

W (G, H)θ ≃ (W (Rre) × W (Rim)) o W (Rcx)

≃ (W (D4) × W (D4)) o W (A2),

where W (A2) ≃ S3 acts by the diagonal triality action.

Next note that

Rcpt,im = {±ei ± ej | i, j ∈ {1, 2} or i, j ∈ {3, 4}}.

Consider the chain of inclusions

W (Rcpt,im) ⊂ WR(Rim) ⊂ Wgr(Rim) ⊂ W (Rim).
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The ends are easy to fill in,

(Z/2)4 ⊂ WR(Rim) ⊂ Wgr(Rim) ⊂ W (D4) ≃ S4 o (Z/2)3.

Recall that atlas thinks of Wgr(Rim) as W (Rcpt,im) o B where B is two-group. In this example,
it’s easy to check that

Wgr(Rim) ≃ (Z/2)4 o V4,

where V4 = Z/2 × Z/2 is the Klein group. (Using the notation V4 eliminates possible confusion
with the other Z/2’s floating around.) What is harder to see is that in this example the inclusion
WR(Rim) ⊂ Wgr(Rim) is an equality,

WR(Rim) ≃ (Z/2)4 o V4.

Thus we conclude

(0.5) W (E8, H) ≃
(

W (D4) × [W ((A1)4) o V4]
)

o W (A2).

In fact, here is the exact output from atlas . (The Cartan subgroup in question is labeled 5.)

This is the Atlas of Reductive Lie Groups Software Package version 0.2.4.

empty: type

Lie type: E8

enter inner class(es): s

main: realform

(weak) real forms are:

0: e8

1: e8(e7.su(2))

2: e8(R)

enter your choice: 2

real: realweyl

cartan class (one of 0,1,2,3,4,5,6,7,8,9): 5

Name an output file (hit return for stdout):

real weyl group is WĈ.((A.W ic) x WR̂), where:

WĈ is isomorphic to a Weyl group of type A2

A is an elementary abelian 2-group of rank 2

W ic is a Weyl group of type A1.A1.A1.A1

WR̂ is a Weyl group of type D4

generators for WĈ:

24354654376542

124235423167876542

generators for A:

24316542345765423143542876

1343167876

generators for W ic:

5678765

254316542345676542314354265

1345431

134265431765423456787654231435426543176

generators for WR̂:

3

45654

7

2431542345678765423143542
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There is one lingering question: is this really the most palatable format for outputing the descrip-
tion of W (G, H)? The answer is perhaps no. To understand why, note that when working with real
Weyl groups (and in fact many other representation theory questions, like the ones treated in IC4),
one often reduces to computations on the fundamental Cartan. In the case of real Weyl groups, here
is how to do that.

Let Rf denote the roots that are perpendicular to ρ∨re. Then Rf is a θ-stable roots system (for
the same reason Rcx was) and Rf has no real roots. In fact Rf corresponds to a Levi factor L of a
real parabolic subgroup of G for which H is a fundamental Cartan. The important facts are

W (G, H)θ ≃ W (Rre) o W (L, H)θ,

and
W (G, H) ≃ W (Rre) o W (L, H)θ.

This reduces the computation of Weyl groups of real Cartan subalgebras to the corresponding com-
putation for fundamental Cartan subalgebras. Furthermore, if we write h = t⊕ a as usual, then even
though (RT )|t is only, in general, a nonreduced root system, we still have

W (L, H)θ ≃ W ((RT )|t).

This is computationally quite nice in practice.

To conclude, consider the reduction to the fundamental case in the E8 example. Then RT ≃ E6
and L is split of type E6. The fundamental Cartan for L has a four-dimensional compact part and
in fact

W ((RT )|t) ≃ F4.

Thus W (L, H)θ ≃ W (F4). Moreover in the chain of inclusions

W (roots of l ∩ k, t) ⊂ W (L, H) ⊂ Wgr((RT )|t),

both ends are easily seen to be the Weyl group of type C4. So, in fact,

W (L, H) ≃ W (C4),

and so we conclude that

(0.6) W (E8, H) ≃ W (D4) o W (C4).

Compare this with the conclusion of (0.5),

(0.7) W (E8, H) ≃
(

W (D4) × [W ((A1)4) o V4]
)

o W (A2).

Since S3oV4 ≃ S4, we see that the last part of previous equation really is W (C4), and the descriptions
match. But there is a good case to be made that the description of (0.6) is better than that of (0.7),
the output from atlas .
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