
Closure Relations of K orbits on G/B

1. Introduction

Let G be a complex, connected, reductive algebraic group defined
over R and let GR be the real points of G. Let KR be a maximal
compact subgroup in GR and let K be its complexification. Choose a
Cartan subgroup H of G and a Borel subgroup B of G containing H.
Let h ⊂ b ⊂ g be the corresponding Lie algebras and let X = G/B be
the flag variety. Then G acts on X in the obvious way and hence K
acts on X by restriction.

Theorem 1.1. K acts on X with finitely many orbits.

The orbits in G/B under the action of K are denoted K\G/B. There
is a partial order on K\G/B, called the closure order, defined as fol-
lows:

Q1 � Q2 ⇐⇒ Q1 ⊂ Q2

The Atlas software command kgb produces a subset of the closure
order for a general group GR. Our goal here is to describe an algorithm
for computing the remaining closure relations from the information
currently provided by Atlas.

2. The Complex Case

Much of the behavior in the general case can be anticipated from
the more familiar complex case. For now, suppose that GR = G is a
complex group regarded as a real group.

Proposition 2.1. There is an order preserving bijection between K\GC/B
and B\G/B. Here GC refers to the complexification of the group G.

Thus, in the complex case, we can study K\GC/B by simply study-
ing B double-cosets in G. To this end, we have the following familiar
theorem.

Theorem 2.2. (Bruhat Decomposition) There is a bijection:

W (h, g)←→ B\G/B

Here, W (h, g) refers to the Weyl group of G. Furthermore, if we
denote the orbit in B\G/B corresponding to w by BwB, then we have
l(w) = dim(BwB), where l(w) denotes the length of w.

There is a very convenient way of describing the closure order (called
the Bruhat order) in B\G/B.
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Theorem 2.3. (Bruhat Order) Let w ε W (h, g) and suppose w =
sα1sα2 · · · sαk

is a reduced expression for w. Then Bw′B � BwB if
and only if w′ = s′α1

· · · s′αk
where s′α1

· · · s′αk
is an ordered subset of

sα1sα2 · · · sαk
.

Example Let G =SL(2,C) and let B be the set of upper triangular
matrices. Then we can identify G/B with one dimensional complex
projective space, P1. The Weyl group is S2 and thus we expect that
there should be exactly 2 orbits in the Bruhat decomposition. Clearly,
the orbit corresponding to the identity is BeB = eB and is just a
single point. If we denote the non-trivial element of S2 by sα, then the
orbit BsαB is everything else. The closure order is then given by the
following graph:

BsαB
•
|
|
•
eB

Alternatively, this example shows that B acts on the parabolic sub-
group corresponding to the simple root α with exactly 2 orbits (modulo
B).

In fact, the general Bruhat order is ’generated’ by the above example.
To see this, consider the following map:

πα : G/B → G/Pα

where Pα denotes the parabolic subgroup corresponding to the root
α. The map πα is the natural projection map that sends B cosets in
G to their corresponding Pα cosets. Now consider the map:

πα := π−1
α ◦ πα

πα converts B cosets to Pα cosets modulo B. We then have to
following geometric fact that generalizes the above example.

Theorem 2.4. Suppose l(wsα) = l(w) + 1. Then the collection of
orbits given by πα(BwB) can be viewed as a P1 fiber bundle over the
orbit BwB, i.e.

P1 → πα(BwB)
↓

BwB
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In the G = SL(2,C) example, the theorem is trivially true (there’s a
single fiber). With the above geometric picture in hand, we can now
describe the closure order.

Lemma 2.5. Suppose l(wsα) = l(w) + 1. Then πα(BwB) is a union
of exactly two orbits: πα(BwB) = BwB ∪ BwsαB. Furthermore,

πα(BwB) = πα(BwB).

Essentially, the lemma tells us that something in the closure of the
orbit BwsαB lives in the πα fiber of something in the closure of BwB.
This fact (combined with the above example) leads immediately to an
inductive proof of the Bruhat order.

3. The General Case

We now turn to the general case. Suppose that Q ε K\G/B and
assume that we have dim(πα(Q)) = dim(Q) + 1. Then we can still
view Q as the base space of a P1 bundle, i.e.

P1 → πα(Q)
↓
Q

Consequently, we get an analogous statement about orbit closures:

πα(Q) = πα(Q)

So, understanding the general case comes down to understanding
the possible ways that πα(Q) can decompose as a union of K-orbits.
This of course depends on the type of root that α is, according to the
following:

• If α is a real or compact imaginary root, dim(πα(Q)) 6= dim(Q)
+ 1. Since it suffices to understand only those operations that
increase dimension, we can ignore this case.

• Suppose now that α is complex and dim(πα(Q)) = dim(Q) + 1.
Then the situation is the same as in the complex case and we
have πα(Q) = Q ∪ sαQ. Here sαQ denotes the orbit obtained
from Q by the cross-action corresponding to the root α.

• If α is noncompact imaginary, then there are two cases. The
behavior of K in the first case (called type I) is illustrated by
considering the example GR =SL(2,R). In this case, K acts on
πα(Q) with three orbits: πα(Q) = Q ∪ sαQ ∪ cαQ. Here cαQ
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denotes the orbit obtained from Q by the Cayley transform cor-
responding to the root α.

• The behavior of K on the second type of noncompact imaginary
root (called type II), is illustrated by the example GR =GL(2,R).
Here the situation is a little better: πα(Q) = Q ∪ cαQ. Here
again cαQ denotes the orbit obtained from Q by the Cayley
transform corresponding to the root α. Note that there are no
longer distinct orbits coming from the cross-action of α.

We now have everything that we need to generalize the Bruhat order
from above. We start with a definition.

Definition 3.1. The Atlas graph is the graph consisting of the follow-
ing:

• Vertices: One vertex for each element of K\G/B. The orbit
corresponding to the vertex v will be denoted by Qv.
• Edges: There is a (directed) edge from vertex v1 to v2 if and

only if dim(Qv1) = dim(Qv2) + 1 and Qv1 ⊂ πα(Qv2), for some
simple root α.

Remark 3.2. This information is all currently provided by the Atlas
software through the kgb command. Notice that edges in the Atlas graph
have an associated simple root (denoted by α in the above definition).
In what follows, this association is important and is assumed to be part
of the Atlas graph.

Remark 3.3. The fact that the Atlas graph only contains edges con-
necting vertices of codimension one is justified by the following theorem.

Theorem 3.4. The closure order in K\G/B is generated by related
elements whose dimensions differ by one.

The Atlas graph is a subgraph of the closure order. Our goal can thus
be restated as follows. Starting with the Atlas graph, we would like
an effective algorithm (along the lines of that implied by the Bruhat
order) to compute the additional codimension one closure edges not
present in the Atlas graph.
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Algorithm: To find the closure of a vertex v in K\G/B i.e. all extra
edges of codimension one:

(1) Construct a reduced expression set for v. This is a set (denoted
Sv) of reduced expressions for v (i.e. paths to closed vertices
in the Atlas graph). Elements contained in Sv are referred to
as reduced expressions. As in the complex case, the important
information contained in a reduced expression is not the edges
themselves, but rather the simple roots associated to the edges.
We construct Sv recursively as follows:
• At first, Sv has a single (empty) path starting at v. If v is

connected to another vertex v′ via a cross-action or Cayley
transform of type II, then add v′ to the path in Sv. If there
is more than one such edge, we can choose any one we like.
• If there are only edges corresponding to Cayley transforms

of type I, we do the following. Suppose that v is connected
to v′ and v′′ by a pair of such edges. Then we want Sv

to contain two paths, one connecting v to v′ and one con-
necting v to v′′. In other words, our path to a closed orbit
must ’split’ here and we need to keep track of both paths.
Again, if there are multiple pairs of edges of this type, then
we can choose any pair that we wish.
• Repeat this process for each path in Sv until all paths end

at a closed orbit.
(2) Now that we have constructed Sv, do the following. For each

reduced expression in Sv, try deleting a single element and see
if this gives a reduced expression of an orbit (say v′) of codi-
mension one not already connected to v in the Atlas graph. If
so, add a new edge from v to v′. Note that when comparing
reduced expressions, we compare them as ordered lists of simple
roots.

The above algorithm is based on the following theorem.
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Theorem 3.5. Suppose Qv ε K\G/B and let Sv be its reduced ex-
pression set. If w = α1α2 · · ·αk is a reduced expression in Sv, then
w′ = α1

′ · · ·αk
′ is a subexpression of w if α1

′ · · ·αk
′ is an ordered sub-

set of α1 · · ·αk. Then an orbit Qv′ � Qv if and only if there is a reduced
expression for Qv′ that is a subexpression of some reduced expression
in Sv.

Proof. (sketch) The proof is by induction on the dimension of Qv. For
the base case, it suffices to consider the case where α is noncompact
type I (other cases are the same as the complex case). In this case,
there are two reduced expressions in Sv, each with a single element.
Deleting the single element from each of these expressions gives the
two closed orbits in the closure of Qv.

For the inductive case, it again suffices to consider the noncompact
type I case. To that end, suppose that α is noncompact imaginary of
type I and assume that Qv = cαQv′ and Qv = cαQv′′ . Since dim(Qv′)
+ 1 = dim(Qv′′) + 1 = dim(Qv), we know by induction that orbits in
the closure of Qv′ and Qv′′ are given by subexpressions of elements in
Sv′ and Sv′′ . However, the action of the Cayley transform (cα) simply
appends α to each such reduced expression. Thus, subexpressions of
elements of Sv are exactly those of elements of Sv′ and Sv′′ with an
additional α on the end. These correspond to orbits in the fiber (with
respect to πα) over orbits in the closures of Qv′ and Qv′′ . But, by
the comments at the beginning of section 3, we see that this exactly
describes the closure of Qv. �
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