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1. The graded Hecke algebra and Langlands classification

Let (X ,R, X̌ , Ř,Π) be a (reduced) root datum with Weyl group W . Let
c : Π → N be a parameter set, i.e., a function such that c(αj) = c(αi)

whenever αj and αi are W -conjugate. Set t = X̌ ⊗ C, t∗ = X ⊗ C, and
similarly tR and t∗

R
.

Definition 1.1. The graded Hecke algebra H is the vector space CW ⊗ A,
where A = S(t∗) subject to the commutation relation

sα · ω = sα(ω) · sα + c(α)ω(α̌), for α ∈ Π, ω ∈ t∗.

If V is a finite dimensional irreducible module, A induces a generalized
weight space decomposition

V =
⊕

λ∈t

Vλ.

Call λ a weight if Vλ 6= 0.

Definition 1.2. The irreducible module V is called essentially tempered if
Re(ωi(λ)) ≤ 0, for all weights λ ∈ t of V and all fundamental weights ωi ∈ t∗.
If in addition Re(x(λ)) = 0, for all x ∈ X perpendicular on Ř, V is called
tempered. If V is tempered and Re(ω(λ)) < 0, for all λ, ωi as above, V is
called a discrete series.

Example. One discrete series which appears in every Hecke algebra is the
Steinberg module St. As a W -representation, St|W = sgn, and the unique
A-weight is −

∑
c(αi)ω̌i, where ω̌i ∈ t are the fundamental coweights.

The center of the Hecke algebra AW acts by a character on V . The
central characters are therefore parametrized byW -orbits on t. Call a central
character real if the corresponding W-orbit is in tR.

We recall the Langlands classification due to Evens. For every ΠP ⊂ Π,
one can define RP and ŘP . Let HP be the Hecke algebra attached to the
root datum (X ,RP , X̌ , ŘP ,ΠP ). This can be regarded as a subalgebra of H.
Moreover, HP decomposes as

HP = HM ⊗ S(a∗),

where a = {ν ∈ t : α(ν) = 0, for all α ∈ ΠP }, and HM is the Hecke
algebra attached to (X ′,RP , X̌

′, ŘP ,ΠP ), where X ′ ⊂ X and X̌ ′ ⊂ X̌ ′ are
the subsets perpendicular to a, respectively a′.
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Theorem 1.3 (Evens). Every irreducible H-module appears as the unique
irreducible quotient L(P, V, ν) of an I(P, V, ν) = H ⊗HP

(V ⊗ Cν), where V
is tempered for HM , ν ∈ a+ = {ν ∈ a : α(ν) > 0, for all α ∈ ΠP }.

If L(P, V, ν) ∼= L(P ′, V ′, ν ′), then P = P ′, V ∼= V ′, and ν = ν ′.

Let w0 denote the longest element in W . The Hecke algebra H has a
∗-operation:

w∗ = w−1, w ∈W ;

ω∗ = −w0 · (w0ω) · w0, ω ∈ t∗.

Then one can define Hermitian and unitary modules for H.

Problem. Identify the unitary dual of H. It is sufficient to determine the
unitary modules with real central character.

The tempered modules are classified for many parameter sets c, but not
for all. We remark that however, results of Opdam show that all tempered
modules are unitary. (The Hecke algebra H carries a inner product defined
using ∗, so one can construct the Hilbert space completion of H, call it H.
Then one shows that all discrete series are submodules of H.)

2. Geometric graded Hecke algebras

The Hecke algebra with equal parameters H0 arises from the theory of
Iwahori-spherical representations of a split p-adic group. Its dual was clas-
sified by Kazhdan and Lusztig.

Let G be a simply connected quasi-simple complex group with Lie algebra

g, and let NG denote the set NG = {(e, φ) : e nilpotent in g, φ ∈ Â(e)}.
(Here, A(e) denotes the component group of the centralizer of e in G.)
Recall that there exists an injection

Ŵ ↪→ NG,

the Springer correspondence. Then

Ĥ0 ↔ {(s, e, ψ) : s ∈ g semisimple, e ∈ g nilpotent, [s, e] = 2e,

ψ ∈ Â(s, e) satisfying some restrictions}/G.

The restrictions are that ψ|Z(G) = 1, and that ψ “come” from Springer’s
correspondence.

Many other Hecke algebras (with unequal parameters) appear when one
describes other classes of representations (unipotent) of p-adic groups. We
recall some results of Lusztig for the geometric classification of such algebras.

Firstly, the generalized Springer correspondence gives a bijection

NG ↔ tj≥0Ŵj ,
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where Wj are Weyl groups, and W0 = W. For example, if G = Sp(6), |NG|

has 16 elements, and the bijection is NG ↔ Ŵ (C3) t Ŵ (C2) t ξ. (Here ξ
denotes a single representation.)

Then Lusztig’s classification is:

tj≥0Ĥj ↔ {(s, e, ψ) : ψ is unrestricted}/G.

In the sp(6) example, the left hand side is the union of dual for H(C3, 2, 2),
H(C2, 2, 3), and one cuspidal representation parametrized by the nilpotent
(42) in sp(6).

Each Hj and Wj are attached to a triple (Mj ,Oj ,Lj), where Mj is a Levi
subgroup with Lie algebra mj , Oj is a nilpotent orbit in mj, and Lj is a cusp-
idal local system on Oj . The cuspidal local systems are those parametrizing
representation ξ as above (those which do not belong to a smaller Weyl
group) in the generalized Springer correspondence. (The notion is very re-
strictive, for example in sp(2n) the only nilpotent orbits carrying a cuspidal
local system are of the form (2, 4, . . . , 2k).) Set Wj = NG(Mj)/Mj . This is
a Coxeter group. The Hecke algebra is defined using tj = Z(mj), Rj ⊂ t∗j
the nonzero weights of tj on g. The simple roots Πj and the parameter set
c : Πj → N are obtained from embedding mj maximally into Levi subalge-
bras m′

j .

Definition 2.1. For these Hecke algebras, a geometric parameter (s, e, ψ)
is called tempered if {Re(s), e} can be embedded into a Lie triple of g. (Here
Re(s) denotes the hyperbolic part of the semisimple element s.)

A geometric parameter is called a discrete series if in addition e is a
distinguished nilpotent element.

The Springer and generalized Springer correspondences can be viewed
as the analogue of Vogan’s lowest K-type bijection for real groups between

tempered (g,K)-modules with real infintesimal character and K̂.

Finally, we mention that for a geometric Hecke algebra, the unitarity of
tempered modules also follows from the connection with the representations
of the (dual) p-adic group.

3. Hecke algebras in the exceptional groups.

We will consider the example of G = E7. We have the following bijection

{(s, e, ψ)}/G ↔ Ĥ(E7) t ̂H(F4, 1, 2) t κ.

The first algebra is graded Hecke algebra with equal parameters of type E7,
the second one is of type F4 with parameters 1 on the long roots, and 2 on the
short roots, and κ is a cuspidal representation parametrized by the nilpotent
E7(a5). We use the Bala-Carter classification for nilpotent orbits, and the
generalized Springer correspondence computed by Spaltenstein. The cusp-
idal local system to which H(F4, 1, 2) is attached is on the Levi subalgebra
(3A1)” in E7.
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Definition 3.1. A module U of H is called spherical if HomW [triv : U ] 6= 0.

We give an example in terms of Langlands classification, which illustrates
the philosophy for classifying the unitary dual of H(F4, 1, 2). Recall that we
are only considering modules with real central character. Fix ΠP ⊂ Π, and
let V be a tempered representation for HM . Not all tempered V need to be
considered but only those which are in the limit parameters.

Proposition 3.2 (Barbasch-Moy). The Hermitian dual of L(P, V, ν) is
L(w0P,wmV,−w0ν), where wm is an element of minimal length in Ww0P ·
w0 ·WP .

We will assume from now on that (P, V, ν) is a Hermitian datum. Denote

UH(P, V ) = {ν : L(P, V, ν) is unitary}.

This is a subset of a.
The tempered module V is parametrized by a Lie triple {e, h, f}. Let

z(e, h, f) denote the centralizer in g of the Lie triple. Denote by H(P, V ) the
Hecke algebra attached to z(e, h, f), with a parameter set c which is deter-
mined explicitly. (The parameters c are lengths of complementary series in
the maximal parabolic cases.)

Principle.

UH(P, V ) ≈ UH(P,V )(0, triv) = SU(H(P, V )).

(The right hand side is the spherical unitary dual of H(P, V ).)

Step 1. Nonunitarity. There is an intertwining operator

A(V, ν) : I(P, V, ν) → I(P, V,−ν)

which gives the Hermitian form on L(P, V, ν). For each µ ∈ Ŵ , such that
HomWP

[µ, V ] 6= 0, A(V, ν) induces an operator

Aµ(V, ν) : HomWP
[µ : V ] → HomWP

[µ : V ].

These operators are normalized, so that Aµ0(V, ν) = 1 on a W-type µ0 (of
multiplicity one) attached by the generalized Springer correspondence to the
nilpotent element e. The condition for L(P, V, ν) to be unitary is that all
operators Aµ(P, ν) are positive semidefinite. In general, we actually use the
reverse condition, so a condition for nonunitarity.

We need some explicit calculations in the maximal parabolic cases, but
after that we can decide for which µ, Aµ(V, ν) is the same as some spherical
operator Aρ(µ)(ν) in H(P, V ).

Step 2. Unitarity. We show that the remaining parameters ν are unitary
by one of the following methods:

(1) irreducible deformations of unitarily induced modules from unitary
parameters on subalgebras.
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(2) IM-duals of unitary modules. The Hecke algebra has an involution
which preserves unitarity (the Iwahori-Matsumoto involution). This
is very hard to compute in general, so to apply it in our cases, we need
to find composition series for endpoints of complementary series.

Example. In H(F4, 1, 2), consider ΠP = A2 (the long roots), and V = St.
The nilpotent element is e = A2 +3A1 in E7. The centralizer is z = G2. The
principle says that UH(A2, St) ≈ SU(G2, 2, 1). In fact the answer is

��

��

������

��	


��

�����
�����
�����
�����
�����
�����
�����

�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

(0, 1) ( 1

2
, 0) ( 2

3
, 0) (1, 0)

( 1

2
, 1

2
)

(0, 1)

(0, 2)
(1, 2)

ν1

ν2

( 3

2
, 0)

(0, 3)

Figure 1. Unitary parameters and reducibility lines for A2 + 3A1

4. Illustration of the principle in type A

Let us consider the simplest example, that of the Hecke algebra of type A
(necessarily with equal parameters, assumed to be all 1). The only discrete
series is the Steinberg module. Moreover, since the induced I(P, St, 0) is
irreducible for any P , one can rewrite the Langlands classification as follows.
The reason is that the centralizers of nilpotent elements in the adjoint group
are all connected in type A.

Proposition 4.1. Every irreducible H(An)-module appears as the unique
irreducible quotient L(P, St, ν) of a standard module I(P, St, ν) = H ⊗HP

(St⊗ Cν), where ν ∈ a≥0 = {ν ∈ a : α(ν) ≥ 0, for all α ∈ ΠP }.
If L(P, St, ν) ∼= L(P ′, St, ν ′) then P = P ′ and ν = ν ′.

The unitary dual in this case is of course a particular case of the work of
Tadic. But it can be formulated via the principle stated before. (Since the
only tempered module that appears in the standard modules notation is the
Steinberg, we will drop St from these notations.)
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In type A, the nilpotent orbits are uniquely determined in the Bala-Carter
classification by subsets ΠP of Π, so denote by OP the nilpotent orbit cor-
responding to P .

Conjecture 4.2. UH(P ) = SU(H(z(OP ))).

Proof. We only sketch the proof of the inclusion UH(P ) ⊆ SU(H(z(OP ))).
The general case reduces to the setting Π = An, P = Am

k , n = m(k+1)− 1.
Then z(OP ) is of type Am−1.

We use the simple roots Π = {ε1 − ε2, ε2 − ε3, . . . }. The central character
can be written as s = (− k

2 + ν1, . . . ,
k
2 + ν1, . . . ,−

k
2 + νm, . . . ,

k
2 + νm). The

Hermitian condition on s is the same as the Hermitian condition for the
spherical parameter ν = (ν1, . . . , νm) in Am−1, i.e., ν1 = −νm, ν2 = −νm−1,
etc. Assume this is satisfied.

The unique lowest W -type of I(P, ν) is µ0 = (k+1, . . . , k+1)⊗sgn. (The
tensoring with sgn comes from the normalization of the Springer correspon-
dence that agrees with the Kazhdan-Lusztig classification.) The intertwining
operators Aµ(ν) are normalized so that Aµ0(ν) ≡ 1. The relevant W -types
for the spherical unitary dual of the centralizer (of type Am−1) are (m− l, l),
l ≤ m

2 .
We identify theW (An)-types µ such that the operators Aµ(ν) : HomWP

[µ :
St] → HomWP

[µ : St] are identical with the spherical operators on the rel-
evant W (Am−1)-types. Explicitly, the matching is as follows

(k + 2, . . . , k + 2︸ ︷︷ ︸
l

, k + 1, . . . , k + 1︸ ︷︷ ︸
m−2l

, k, . . . , k︸ ︷︷ ︸
l

) ⊗ sgn↔ (m− l, l).

The calculation comes down to decomposing the operators Aµ(ν) and an
explicit maximal parabolic calculation (the case m = 2).

�

5. Maximal parabolic cases.

We consider the Hecke algebra with equal parameters. Let ΠP ⊂ Π be
maximal, {α} = Π − ΠP , and L(P, V, ν) as in the Langlands classification.
Let ω̌ denote the fundamental coweight for α.

If p = m + n is the corresponding maximal parabolic, V is attached
to a map sl(2) ↪→ m (given by the Lie triple {e, h, f} in the geometric
parametrization of V ). Then n is an sl(2)-module, via the adjoint action
of m. On the other hand, the coweight ω̌ commutes with {e, h, f}, and n

decomposes as n = ⊕k
i=1ni, where ni is the i-eigenspace of ω̌. Furthermore,

decompose each ni into simple sl(2)-modules ni = ⊕j(dij), where by (d)
we mean the simple sl(2)-module of dimension d. If (1) appears in the
decomposition, denote by i0(P ) the eigenvalue i for which it appears.

Example 1. We present first the case when the Langlands datum is generic.

Definition 5.1. A module U of H is called generic if HomCW [sgn, U ] 6= 0.

The result in the maximal parabolic generic cases is the following.
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Theorem 5.2. Let V be a generic discrete series of HM . Assume (P, V, ν)
is Hermitian.

(1) If z(e, h, f) = T1, L(P, V, ν) is unitary if and only if ν = 0.
(2) If z(e, h, f) = A1, then L(P, V, ν) is unitary if and only if

0 ≤ ν ≤
1

i0(P )
, if (P, V ) 6= (A4 +A2 +A1, St) in E8;

0 ≤ ν ≤
3

10
, and ν =

1

2
, if (P, V ) = (A4 +A2 +A1, St) in E8.

In conclusion, with the E8 exception, UH(P, V ) = SU(H(P, V )).

Example 2. If we consider nongeneric Langlands data, we can get com-
plementary series of “any length” (even for the Hecke algebra with equal
parameters).

Let the nilpotent element e correspond to (2, 4, . . . , 2k) in sp(2n). There

are

(
k

[k2 ]

)
discrete series in the Hecke algebra (with equal parameters) at-

tached to e. One of them, call it Vk, has a single W-type, µk, where

µk ⊗ sgn =

{
0 × (2m+ 1)m, k = 2m

(2m+ 1)m+1 × 0, k = 2m+ 1
.

Proposition 5.3. In H(Cn+1), L(Cn, Vk, ν) is unitary if and only if 0 ≤
ν ≤ [k2 ] + 1

2 .

When we generalize these two examples to other parabolics (not maxi-
mal), we will find matchings with the spherical unitary dual of Hecke alge-
bras (on centralizers) with equal, respectively unequal parameters. There-
fore, even when we try to identify the unitary dual of the Iwahori-Hecke
algebra, we are naturally led to consider (at least) the spherical unitary
dual of Hecke algebras with unequal parameters.


