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The basic references are [7] and [6]. The parameters given in these notes
only exist in the unpublished preprint [4]. The case of regular integral in-
finitesimal character is discussed in [1]. Everything appears, sometimes in
somewhat different form, in [2].

1 Algebraic Groups and Root Data

A root datum is a quadruple

D = (X, ∆, X∨, ∆∨)

where X,X∨ are free abelian groups of finite rank, and ∆, ∆∨ are finite
subsets of X,X∨, respectively. In addition there is a perfect pairing 〈, 〉 :
X × X∨ → Z so X∨ ≃ Hom(X, Z). There must exist a bijection α → α∨ :
∆ → ∆∨ such that for all α ∈ ∆,

〈α, α∨〉 = 2, sα(∆) = ∆, sα∨(∆∨) = ∆∨.

Heer sα(x) = x − 〈x, α∨〉α and sα∨(y) = y − 〈α, y〉α∨ (x ∈ X, y ∈ X∨).
By [3, Lemma VI.1.1] (applied to Z〈∆〉 and Z〈∆∨〉) the conditions de-

termine the bijection uniquely once ∆ and ∆∨ are given. In particular
(X, ∆, X∨, ∆∨) is determined by (X, ∆) if Z〈∆〉 = X. This condition holds
if and only if the corresponding group is semisimple.
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Suppose ∆+ is a set of positive roots of ∆. Then ∆∨+ = {α∨ |α ∈ ∆+}
is a set of positive roots of ∆∨, and

Db = (X, ∆+, X∨, ∆∨+)

is a based root datum. Alternatively we may replace ∆+ with a set Π of
simple roots.

Two root systems are isomorphic if there exists an isomorphism φ : X →
X ′ such that φ(∆) = ∆′ and φt(∆

′∨) = ∆∨. Here φt : X
′∨ → X is given by

(1.1) 〈φ(x), y′〉 = 〈x, φt(y′)〉 (x ∈ X, y′ ∈ X
′∨).

Let G be a connected reductive algebraic group and choose a Cartan
subgroup T. The corresponding root data is

D = (X∗(T), ∆, X∗(T), ∆∨)

where X∗(T) = Hom(T, Gm), X∗(T) = Hom(Gm, T), ∆ = ∆(G, T) is the set
of roots of T in G, and ∆∨ = ∆∨(G, T) is the set of co-roots.

If T′ is another Cartan subgroup the associated root data is isomorphic
to the given one. This isomorphism is canonical up to the Weyl group W =
W (G, T).

Given a Borel subgroup B containing T we get a set of positive roots ∆+,
and corresopnding positive coroots ∆∨+. Associated to this is a based root
datum

D = (X∗(T), ∆+, X∗(T), ∆∨+).

Given another choice of T′ ⊂ B′ there is a canonical isomorphism of associated
based root data.

There is an exact sequence

(1.2) 1 → Int(G) → Aut(G) → Out(G) → 1

where Int(G) is the group of inner automorphisms of G, Aut(G) is the au-
tomorphism group of G, and and Out(G) ≃ Aut(G)/Int(G) is the group
of outer automorphisms. If we let Z(G) be the center of G then Int(G) ≃
G/Z(G), also known as Gad (which is a semisimple group).
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A splitting datum for G is a set

(1.3) (B, T, {Xα})

where B is a Borel subgroup, T is a Cartan subgroup contained in B, Π is
the set of simple roots associated to B, and {Xα |α ∈ Π} is a set of simple
root vectors. This is also referred to as an epinglage or a pinning.

The group Int(G) acts simply transitively on the set of splitting data. It
follows that if S = (B, T, {Xα}) is a splitting datum S then

StabAut(G)(S) ≃ Out(G)

and this isomorphism gives a splitting of the exact sequence (1.2). Further-
more since any automorphism may be modified by an inner automorphism
to fix B and T (as sets) and act as a permutation on {Xα}. It follows that

Out(G) ≃ Aut(Db)

In particular If G is semisimple then Out(G) is isomorphic to the automor-
phisms of the Dynkin diagram of G.

(1.4)(a) Out(G) ≃ Aut(Db).

We also have

(1.4)(b) Out(G) ≃ Aut(D)/W.

Fix γ ∈ Out(G). Define

(1.5) Z(G)γ = {z ∈ Z(G) | s(γ)zs(γ)−1 = z}

This is independent of the choice of a splitting s of (1.2).

If G = T is a torus an automorphism θ is determined by an automorphism
of X∗(T), i.e. an element of GL(n, Z). If θ has order 2 then there is a basis

x1, . . . , xr, y1, . . . ys, z1, z
′

1, . . . , zt, z
′

t

of X∗(T) so that θ(xi) = xi, θ(yi) = −yi, and θ(zi) = z′i, θ(z
′

i) = zi.
In general G = TGd where T = Z(G)0 is a central torus, and an auto-

morphism is given by automorphisms of T and Gd, which agree on T ∩ Gd.
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2 The Dual Group and the Dual Automor-

phism

Suppose we are given G with corresponding root data D = (X, ∆, X∨, ∆∨).
The dual root data is D∨ = (X∨, ∆∨, X, ∆), and the dual group is the group
G∨ defined by D∨. Alternatively we may describe G and G∨ in terms of their
based root data Db and D∨

b .
If τ ∈ Aut(D) then −τ t ∈ Aut(D∨) cf. Section 1).
Note that if τ ∈ Aut(Db) then −τ t is probably contained in Aut(D∨

b ).
However −w0τ

t ∈ Aut(D∨

b ) where w0 is the long element of the Weyl group.
We define τ∨ = −w0τ

t, this defines an isomorphism

Aut(Db) ∋ τ → τ∨ ∈ Aut(D∨

b )

By (1.4)(a) we obtain a bijection (not a group homomorphism) also denoted
τ → τ∨

Out(G) ≃ Out(G∨).

Definition 2.1 For γ ∈ Out(G) define γ∨ ∈ Out(G∨) by (??).

3 Real Forms of G

To say that G is defined over R means that there is an anti–holomorphic
involution σ of G(C). Then G(R) = G(C)σ, and we will write G = G(R).
We say σ is equivalent to σ′ if σ′ = int(g) ◦ σ ◦ int(g−1) for some g ∈ G, i.e.

σ(x) = gσ(g−1xg)g−1 (x ∈ G(C)).

An involution of G, i.e. an algebraic automorphism of G of order 2, may
be considered a holomorphic involution of G(C). We say involutions θ, θ′ are
equivalent if θ = int(g) ◦ θ′ ◦ int(g−1) for some g ∈ G.

Suppose G is defined over R, with corresponding anti–holomorphic invo-
lution σ. We may choose an involution θ of G, a “Cartan involution”, such
that K = Gθ is a maximal compact subgroup of G. Then K = Gθ is the
algebraic group corresponding to K, and K(C) = G(C)θ.

Lemma 3.1 The map taking an anti–holomorphic involution σ to a corre-
sponding Cartan involution θ is a bijection between equivalence classes of real
forms and equivalence classes of involutions.
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We work entirely with Cartan involutions.

Definition 3.2 We say two involutions θ, θ′ are inner if they have the same
image in Out(G), i.e. there exists g ∈ G such that θ′ = int(g) ◦ θ, or

θ′(x) = gθ(x)g−1. (x ∈ G).

This is an equivalence relation, and an equivalence class is called an inner
class. Such a class is determined by an involution γ ∈ Out(G), and we refer
to γ as an inner class.

Note that if θ is equivalent ot θ′ then θ is inner to θ′.

Definition 3.3 We say two real forms of G are inner if their Cartan invo-
lutions θ, θ′ are inner.

In fact two real forms are inner to each other if and only if the have the
“same” fundamental (i.e. most compact) Cartan subgroup.

4 Basic Data

Fix G. By Definition 3.2 an inner class of real forms is given by an involution
γ ∈ Out(G).

Thus our basic data will be a pair (G, γ) where γ is an involution in
Out(G). By Section 2 we obtain (G∨, γ∨).

5 Principal and Distinguished Involutions

Definition 5.1 An involution θ of G is principal if the corresponding real
group G is quasisplit, i.e. contains a Borel subgroup.

Lemma 5.2 The following conditions are equivalent

1. θ is a principal involution

2. There is a θ–stable Cartan subgroup T with no imaginary roots,

3. There are a θ–stable Cartan subgroup T and a Borel subgroup B con-
taining T, such that every simple root of T is complex or non–compact
imaginary.

5



K Every real form is inner to a quasiplit group:

Lemma 5.3 Any inner class of involutions contains a principal involution,
which is unique up to conjugation by G.

That is given θ0 ∈ Out(G) there exists a principal involution θ ∈ Aut(G)
with image θ0, and if θ, θ′ are two such, then θ′ = int(g)θint(g)−1 for some
g ∈ G.

Definition 5.4 An involution is said to be distinguished if there are θ–stable
Cartan and Borel subgroups T ⊂ B so that every simple imaginary root is
compact (equivalently: every simple root is compact imaginary or complex).
A real form is said to be distinguished if its Cartan involution is distinguished.

Every real group has a distinguished inner form:

Lemma 5.5 Any inner class of involutions contains a distinguished involu-
tion, and any two such are conjugate by G.

6 Encoding real forms

Fix (G, γ) as in Section 4. Let Γ = {1, σ} = Gal(C/R).
Choose a involution θ0 in the inner class of γ. Consider the group G ⋊ Γ

where the action of σ on G is by θ0. That is int(σ) = θ0.
Suppose θ is a Cartan involution of a real form in the same inner class.

Then θ = int(g) ◦ θ0. Let δ = gσ ∈ G ⋊ Γ − G. Then

θ = int(δ).

That is every Cartan involution in this inner class is given by conjugation by
an element of G ⋊ Γ.

It is natural to take θ0 to be either a principal involution or a distinguished
involution in the inner class (cf. Section 5).

Note that
δ2 = gσ(g) ∈ Z(G)γ

(cf. 1.5).
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7 L-Groups: Version 1

Fix (G, γ) as in Section 4.
Roughly speaking the L–group of G is the semidirect product G∨ ⋊ Γ

where σ acts on G by a distinguished involution in the inner class of γ∨ ∈
Aut(G∨) (Definition 2.1).

More precisely we need to incorporate a conjugacy class of such splittings
into the data:

Definition 7.1 An L–group for G is a pair (G∨Γ,S), where G∨Γ fits in an
exact sequence

1 → G
∨ → G

∨Γ → Γ → 1

and S is a G∨–conjugacy class of splittings of this exact sequence, such that
for s ∈ S, int(s(σ)) is a distinguished involution in the inner class of γ∨.

Remark 7.2 There is a unique quasisplit group G in the given inner class
(in fact a unique strong inner form, cf. Section 9). This has a distinguished
representation π0: the spherical principal series with infinitesimal character
0.

The Weil group (cf. Section 16) maps to Γ, and therefore a homo-
morphsim φ : Γ → G∨Γ defines an irreducible representation of G (in fact
an L–packet, which is a singleton in this case). There is not necessarily a
distinguished homomorphism φ : Γ → G∨Γ. The choice of L–group structure
is such a homomorphism φ, and the choice of L–group struture amounts to
declaring that φ corresponds to π0.

8 Basic Data Revisited

Fix (G, γ) as in Section 4. We obtain G∨ and γ∨ ∈ Out(G) as in Section 2.
We may therefore think of this as a quadruple

(G, γ, G∨, γ∨).

We may define (G∨Γ,S∨), as in Section 7. The same definition applied to
(G∨, γ∨) gives us a group (GΓ,S).
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9 Strong Real Forms

Fix (G, γ) as in Section 4, and GΓ, G∨Γ as in Section 8. We apply the
discussion of Section 6 to GΓ.

Definition 9.1 A strong real form of G is an element x ∈ GΓ−G satisfying
x2 ∈ Z(G). We say two strong real forms x, x′ are equivalent if x is G–
conjugate to x′.

Lemma 9.2 If x is a strong real form of G let θx = int(x). This is the
Cartan involution of a real form in the inner class γ. This map is surjective
onto the real forms in this inner class. If G is adjoint it is a bijection.

10 Representations

Fix (G, γ) as in Section 4, Fix G, an inner class γ ∈ Out(G), and (GΓ, G∨Γ)
as in Section 8.

Definition 10.1 A representation of a strong real form of G is a pair (x, π)
where x is a strong real form of G and π is a (g, Kx)–module.

We say (x, π) is equivalent to (x′, π′) if there exists g ∈ G such that
gxg−1 = x′ and g · π ≃ π′. Here g · π(h) = π(g−1hg) for h ∈ Kx′, and
g · π(X) = π(Ad(g−1)X) for X ∈ g.

Suppose ζ is a distinguished isomorphism. Then ζ induces bijections:

∆∨(G, T) ≃ ∆(G∨,
d
T)(10.2)

∆(G, T) ≃ ∆∨(G∨,
d
T)(10.3)

11 Distinguished Isomorphisms

Fix (G, γ) as in Section 4, and ((GΓ,S), (G∨Γ,S∨)) as in Section 8.

Suppose T is a Cartan subgroup of G, and
d
T is a Cartan subgroup of

G∨. By the construction of G∨ there are isomorphisms

X∗(T
∨) ≃ X∗(

d
T)
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and
T

∨ ≃
d
T, t∨ ≃

d
t.

Given Borel subgroups B,
d
B containing T,

d
T respectively, we obtain isomor-

phisms

ζ(B,
d
B) : T

∨ ≃
d
T, t∨ ≃

d
t.

Also recall X∗(T) = X∗(T
∨) and t∗ = t∨ (canonically). So ζ may be

interpreted as an isomorphism

(11.1) ζ : t∗ ≃
d
t

Definition 11.2 We say an isomorphism ζ : T∨ ≃
d
T is distinguished if it

is equal to ζ(B,
d
B) for some B,

d
B.

Now suppose θ is an involution of T, and
d
θ is an involution of

d
T. Then

(cf. Section 2) θ∨ is an involution of T∨. Suppose ζ : T∨ ≃
d
T is a distin-

guished isomorphism. We define an involution ζ∗(θ) by carrying the involu-

tion θ∨ of T∨ to
d
T via ζ, i.e.

ζ∗(θ)(t) = ζ(θ∨(ζ−1(t))) (t ∈
d
T).

12 Integral L–data

Fix (G, γ) as in Section 4, and ((GΓ,S), (G∨Γ,S∨)) as in Section 8.
Here is the data which will parametrize representations with integral in-

finitesimal character.

Definition 12.1 Fix (G, γ) as in Section 4, and ((GΓ,S), (G∨Γ,S∨)) as in
Section 8.

A set of weak integral L–data is a 6-tuple (x, T, B, y, T∨, B∨) where

1. T ⊂ B ⊂ G are a Cartan and Borel subgroup, respectively,

2. x2 ∈ Z(G),

3. T is θx–stable where θx = int(x),
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4. T∨ ⊂ B∨ ⊂ G∨ are a Cartan and Borel subgroup, respectively,

5. y2 ∈ Z(G∨),

6. T∨ is θ∨y –stable where θ∨y = int(y),

7. The isomorphism ζ = ζ(B, B∨) satisfies ζ∗(θx) = θ∨y ,

A set of (integral) L–data is a pair (S, λ) where S = (x, T, B, y, T∨, B∨) is a
set of weak L–data, λ ∈ t∨, and exp(2πiλ) = y2.

If (S, λ) is a set of strong integral L–data let ζ = ζ(B,
d
B), and identify λ

with an element of t∗ via (11.1).

13 L–data

Fix (G, γ) as in Section 4, and ((GΓ,S), (G∨Γ,S∨)) as in Section 8.
We generalize the construction of the previous section to include repre-

sentations with non–integral infinitesimal character.

Definition 13.1 Fix (G, γ) as in Section 4, and ((GΓ,S), (G∨Γ,S∨)) as in
Section 8.

A set of weak L–data is a 6-tuple (x, T, P, y, T∨, P∨) where

1. T ⊂ G is a Cartan subgroup,

2. x2 ∈ Z(G),

3. T is θx–stable where θx = int(x),

4. P is contained in a set of positive roots of ∆(T, G),

5. T∨ ⊂ G∨ is a Cartan subgroup,

6. y2 ∈ T∨

7. T∨ is θ∨y –stable where θ∨y = int(y), an involution of G∨

y2 = CentG∨(y2),

8. B∨ is a Borel subgroup of G∨

y2 containing T,

9. There is a distinguished isomorphism ζ satisfying: ζ∗(θx) = θ∨y and
∆(B∨, T∨) = {ζ(α∨) |α ∈ P}.
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A set of L–data is a pair (S, λ) where S = (x, T, B, y, T∨, B∨) is a set of weak
L–data, λ ∈ t∨, and exp(2πiλ) = y2.

If (S, λ) is a set of L–data let ζ be any distinguished isomorphism as in
(9). Then we identify λ with an element of t∗ via (11.1).

14 Final Limit L–Data

Suppose X = (S, λ) is a set of L–data, integral or not. Associated to X is a
standard representation I(X) of a real form of G. Let J(X) be the socle of
X, i.e. the set of irreducible subrepresentations of I(X). If λ is regular then
J(X) is a single irreducible representation. Otherwise this may fail.

For example I(X) might be the reducible principal series representation
of SL(2, R) with infinitesimal character 0 and odd K–types; this is the direct
sum of two limits of discrete series representations π±. This realization as
limits of discrete series shows how to obtain each π± as some J(Y ±).

We need to do this in general: put a restriction on the parameters which
are allowed, so that J(X) is always irreducible, and we obtain every irre-
ducible precisely once. There is the final limit construction of [9, Definition
2.4]. We describe the resulting formulation in terms of our parameters.

So suppose (S, λ) is a set of L–data as in Definition 13.1. As at the end
of SEction 13 choose a distinguished isomorphism ζ : t∨ → t∗ and use it to
identify λ with an element of t∗. If α ∈ ∆(G, T) is an imaginary root (with
respect to θ = θx then 〈λ, α∨〉 ∈ Z. It follows that α ∈ P ; then P defines
positive and simple roots of ∆im(G, T).

On the other hand B∨ defines a set of positive roots for the set of imag-
inary roots (with respect to θ∨y ) of ∆(G∨

y2 , T∨). We therefore have a notion
of simple roots of ∆im(G∨

y2 , T∨).

Definition 14.1 Suppose (S, λ) is a set of L–data (Definition 13.1). We
say (S, λ) is a set of final limit L–data if the following conditions hold.

• Suppose α is a simple root of ∆im(G, T) and 〈ζ(λ), α∨〉 = 0. Then α
is non–compact.

• Supose β is a simple roots of ∆im(G∨

y2 , T∨) and 〈λ, β〉 = 0. Then β is
non–compact.

• (No condition on complex roots?)
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15 Parametrization of Representations

Fix (G, γ) as in Section 4, and ((GΓ,S), (G∨Γ,S∨)) as in Section 8.
Suppose (S, λ) is a set of strong L–data. Associated to (S, λ) is a standard

(g, Kx)–module I(S, λ) with infinitesimal character (the G–orbit of) λ. As
at the end of SEction 13 choose a distinguished isomorphism ζ : t∨ → t∗ and
use it to identify λ with an element of t∗.

Theorem 15.1 Suppose (x, π) is an irreducible representation of a strong
real form of G (Section 10) with regular infinitesimal character. Then π ≃
J(S, λ) for some S = (x, . . . ) and λ. Two non–zero representations (x, J(S, λ))
and (x, J(S ′, λ′)) are isomorphic if and only if (S, λ) is G×G∨ conjugate to
(S ′, λ′).

15.1 General Infinitesimal Character

Let J(S, λ) be the socle of I(S, λ), i.e. the direct sum of the irreducible
subrepresentations of I(s, λ). [Q: we need to define this using the translation
principle?]

We say (S, λ) is M–regular if 〈λ, α∨〉 6= 0 for all imaginary roots (with
respect to θx) of ∆(G, T) [there may be a ρ–shift missing here].

Theorem 15.2 Suppose (x, π) is an irreducible representation of a strong
real form of G (Section 10). Then there exists strong, M–regular, L–data
(S, λ) so that π is a subrepresentation of J(S, λ). If (S ′, λ′) also satisfies
these conditions then (S ′, λ′) is G × G∨–conjugate to (S, λ).

This gives a finite to one map from equivalence classes of strong, M–
regular, L–data (S, λ) to equivalence classes (x, π) of representations of strong
real forms of G. This map is a bijection in the case of regular infinitesimal
character. In Section 17 we will describe how to compute the fiber of this
map.

16 Sketch of the Construction of I(S, λ)

Fix (G, γ) as in Section 4, and ((GΓ,S), (G∨Γ,S∨)) as in Section 8. Let (S, λ)
be a set of L–data, where S = (x, T, P, y, T∨, B∨).

Recall the Weil group is WR = 〈C∗, j〉 where j2 = −1 and jzj−1 = z.

12



The data (y, T∨, B∨, λ) defines an L–homomorphism φ : WR → G∨Γ as
follows:

(16.3)
φ(z) = zλzAd(y)λ

φ(j) = exp(−πiλ)

where zλ = exp(λ log(z)) (z ∈ C∗ ⊂ WR) (it requires a short argument that
φ(z) is well defined).

Then φ : WR → 〈T∨, y〉. This is not necessarily isomorphic to the L–
group of T . It is isomorphic to an E–group T∨Γ of T, and maps into T∨Γ
parametrize characters of the ρ–cover T (R)ρ of T (R).

The extra data in S gives us an isomorphism of 〈T, y〉 ≃ T∨Γ, and hence
a character Λ of T (R)ρ.

For example in the case of a discrete series representation Λ is a character
with differential the Harish–Chandra parameter λ; recall that λ−ρ (and not
necessarily λ) exponentiates to the compact Cartan.

If λ is regular Λ is all that is needed to define a standard module I(Ψ, Λ)
as in [5, Definition 8.27]. If Λ is singular an extra choice of positive real roots
is necessary. This is included in the data of S.

The module I(Ψ, Λ) may be written as cohomological induction from a
principal series representation of a quasisplit group L. The reducibility of
J(S, λ) (for singular λ) comes from the reducibility of the corresponding
standard module for L.

Therefore the fiber of the map described in Theorem 15.2 is obtained
from the discussion in the next section applied to L.

17 R–Groups

We need some definitions and results from [7, Chapter 4].
Suppose G is quasiplit and H = TA is the maximally split Cartan sub-

group. Let M = CentG(A); this is an abelian group. We say a character δ
of M is fine if its restriction to (Gd ∩ M)0 is trivial [7, Definition 4.3.8]. Let
∆ = ∆(g, a), the (non–zero) real roots, and ∆ ⊂ ∆ the reduced root system
of ∆. We say a root α of ∆ is real if it is the restriction of a real root of
∆(g, h), and complex otherwise.
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W = NormK(A)/M(17.1)

= W (∆).(17.2)

Let ∆δ be the good roots ([7, Definition 4.3.11]). That is

∆δ = {α ∈ ∆ |α is complex or α is real and δ(mα) = 1}

Fix ν ∈ Â. As in [7, Definitions 4.3.13 and 4.4.9] define

Wδ = StabW (δ)

W 0
δ = W (∆δ)

Rδ = Wδ/W
0
δ

W (ν) = StabW (ν)

Wδ(ν) = StabW (δ ⊗ ν)

W 0
δ (ν) = StabW 0

δ
(δ ⊗ ν)

Rδ(ν) = Wδ(ν)/W 0
δ (ν) ⊂ Rδ

R⊥

δ (ν) = annihlator of Rδ(ν) in R̂δ

Note that R̂δ/R
⊥

δ (ν) ≃ R̂δ(ν).

Definition 17.3 Suppose (S.λ) is a set of strong L–data. The R–group for

S, denoted R(S, λ) is R̂δ(ν) computed on L . . . [Assignment part 1: make
this precise! It comes down to the real roots - a computation involving the
principal series of the quasisplit group L].

If λ is regular then R(S, λ) = 1.

Lemma 17.4 The fiber of the map of Theorem 15.2 is naturally parametrized
by R(S, λ) [Assignment part 2: so that this lemma holds].

18 L–packets and Blocks

Fix (G, γ) as in Section 4, and ((GΓ,S), (G∨Γ,S∨)) as in Section 8.
Fix y, T∨, B∨ as in the definition of L–data, and λ satisfying exp(2πiλ) =

y2. Recall (Section 16) this data defines an L–homomorphism φ : WR → G∨Γ.
We assume λ is regular.
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Definition 18.1 An L–packet is the set of representation J(S, λ) where (S =
(x, T, P, y, T∨, B∨), λ) is a set of L–data.

This is sometimes called a “super” L–packet; it includes representations
on various strong real forms. Its restriction to a single strong real form is a
conventional L–packet.

[Question: singular infinitesimal character?]

Definition 18.2 Fix x, y satisfying x2 ∈ Z(G). The Z–spane of the repre-
sentation J(S, λ) where (S = (x, T, P, y, T∨, B∨), λ) is a set of L–data is a
block.

Again this is sometimes called a super–block. The restriction to a strong
real form is a block. This is a minimal subspace of the Grothendieck group
which is spanned by both irreducible and standard modules. Thus the
Kazhdan–Lusztig polynomials are defined on blocks.

19 Example: SL(2)

Let G = SL(2). Then Out(G) = 1 so γ = 1. We have (G, γ, G∨, γ∨) =
(SL(2), 1, PSL(2), 1).

We fix some notation. Let B± be the upper and lower triangular matrices
in SL(2) respectively. Let T be the diagonal Cartan subgoup. Write B± and
T for PSL(2) as well. (We abuse notation slightly and write PSL(2) as 2×2
matrices.)

Let t(z) = diag(z, 1/z),mρ = t(i). Note that in PGL(2) t(z) = t(−z).
Let λ(z) = diag(z,−z) ∈ t∨.

The group G∨Γ is generated by G∨ and an element δ∨ satisfying (δ∨)2

and δ∨gδ∨−1 = mρgm−1
ρ .

The group GΓ is generated by G and δ, where δ2 = −I and δgδ−1 =
mρgm−1

ρ .
There is a unique L–group structure (G∨Γ, {δ∨, B+}). Here {δ∨, B+} de-

notes the G∨ conjugacy class of (δ∨, B+).
There are two L–group structures (GΓ, {±δ, B+)}. Note that (δ, B+) is

conjugate to (−δ, B−). This corresponds to the fact that PGL(2, R) has two
one–dimensional representations, and this choice amounts to choosing one of
these. Dually this corresponds to choosing a discrete series representation of
SL(2, R) with infinitesimal character ρ.
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There are three inequivalent strong real forms of G, given by x = δ,±mρδ.
The corresponding real groups are SL(2, R) and SU(2), respectively. These
may be though of as SU(2, 0), SU(1, 1) and SU(0, 2).

There are two inequivalent strong real forms of G∨, since it is adjoint,
corresponding to PGL(2, R) and SO(3), respectively.

20 Other Parametrizations

There are several other ways to parametrize the standard and irreducible
representations of real groups. The problem is how to conveniently write
down characters of Cartan subgroups; disconnectedness is the main issue.
Assignment: Carefully write down how to go back and forth between these
classifications.
1 θ–stable data (q, H, δ, ν) ([7, Definition 6.5.1] This realizes the standard
modules as derived functor modules from a minimal principal series of a
quasipslit group L.
2 Character data (H, γ) with γ = (Γ, γ), [7, Definition 6.6.1]. Here Γ is a
character of H, not of a two–fold cover as in (43). The infinitesimal character
is γ, which is dΓ+ a ρ–shift.
3 Cuspidal data (M, δ, ν) [7, Definition 6.6.11]. Here M is a real Levi factor
and δ is a (relative) discrete series representation of M . This is the original
Langlands version of the classification.
4 I(Ψ, Λ) ([5, Definition 8.27 and Theorem 8.29]) Here Λ is a character of
the ρ–cover of H, and the infinitesimal character is dΛ.

21 Vogan Duality

The irreducible representations of strong real forms of G are parametrized by
integral L–data (x, T, B, y, T∨, B∨) with x2 ∈ Z(G), y2 ∈ Z(G∨). This data
is symmetric: (y, T∨, B∨, x, T, B) is L–data with the roles of G, G∨ reversed,
and this defines a representation of a strong real form of G with integral
infinitesimal character. This realizes Vogan duality [8], analogous to duality
for Verma modules given by multiplication by the long element of the Weyl
group.

Now suppose λ is regular but not integral. Then L–data satisfies x2 is
central in G, but y2 is not necessarily central in G∨. To recover Vogan duality
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we have to allow x2 not central in G. This can be done, but requires some
extra work. See [4].
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