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Abstract. The goal of this paper is to is to describe algorithms for identifying

the special nilpotent orbit attached to a cell in terms of descent sets appearing

in the cell. In principle, these algorithms could be implemented as a package
of the Atlas of Lie groups and representations software developed by Fokko

du Cloux and Marc van Leeuwen[1].

1. Introduction

Let g be a complex reductive Lie group with adjoint group G and Weyl group
W. This paper describes a simple algorithm by which one can read off the complex
nilpotent orbit associated with a cell representation of W—provided that W is of
classical type.

Specifically, given any representation of W, we define the τ -signature of V to
be the set of all conjugacy classes of parabolic subgroups P ⊆ W such that V |P
contains a copy of the sign representation of P. We show that, for W of classical
type, the irreducible representations of W are determined by their τ -signatures1,
and we give a simple algorithm by which one can use the τ -signature to find the
partition or partition-pair indexing a given irreducible representation.

The τ -signature of a cell representation C coincides with that of its unique special
subrepresentation, and also with the collection of all parabolics P such that the
simple roots of P are contained in some τ -invariant of the cell. Combining this
with the Springer correspondence, we obtain a simple method which computes the
nilpotent orbit associated with the cell directly from the τ -invariants.

More generally, our algorithm for identifying an irreducible from its τ -signature
implies an algorithm for calculating the full isotypic decomposition of any cell rep-
resentation: implicit in our algorithm is a linear ordering on irreducible W-modules
which refines containment ordering on τ -signatures. Since one knows the sign mul-
tiplicities of all parabolics from the τ -invariants of the cell, one can identify the
highest component of the cell, subtract its sign multiplicities from that of the cell
as a whole, and proceed by recursion to find the full isotypic decomposition. None of
this requires calculation of the character table of W or of matrices for the W-action
on the cell, so it is significantly less computationally intensive than the obvious
approach via character theory.
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1Note that this is false in exceptional type: already for g = g2 we have two irreducible W-

modules sharing the same τ -signature. It is still true that special irreducibles are determined by
their τ -signatures.

1



2 STEVEN GLENN JACKSON AND ALFRED G. NOËL

In section 2, we describe an identification algorithm for type A, which is due
essentially to Young. In sections 3 and 4 we generalize this algorithm to other
classical Weyl groups, and in section 5 we give examples using the output of the
Atlas of Lie groups and representations software.

2. Type A

Let g = glnC the set of n× n matrices. Then W is the symmetric group Sn and
irreducible representations of W are parametrized by partitions of n. The partition
[n] corresponds to the trivial representation while [1, 1, . . . 1, 1] is associated with
the sign representation. Our main objective is to prove that a representation R
of Sn is determined by the collection of Levi factors for which it contains sign
representations. Here is a concrete example of the kind of problems that we aim to
solve:

Suppose we are given an irreducible representation of S5 that admits sign repre-
sentations for parabolic subgroups of S3×S1×S1 and S2×S2×S1 only. Determine
that representation.

The first step is to understand branching laws for irreducible representations of
Sn when restricted to subgroups of the form

H = Sp1 × Sp2 × · · · × Spk
with

k∑
i=1

pi = n

More precisely we have the following theorem:

Theorem 2.1. Maintaining the above notations, let F be partition of n and V F
n the

irreducible representation of Sn associated with F via Schur duality. The multiplic-
ity of the sign representation in V F

n restricted to H is the number of semi-standard
tableaux of shape F⊥ with content λ = (p1, p2, . . . , pk, 0, 0 . . . ). This is the Kostka
number KF⊥,λ.

Perhaps it would be useful to give a few examples before the proof.

Let H = S5 × S3 × S2 ⊆ S10. Suppose we take F and F⊥ to be

F = F⊥ = .

We see that the sign representation does not occur because it is impossible for
F⊥ to have content (5, 3, 2).

On the other hand if we had

F = F⊥ =

1 1 1 1 1
2 2 2
3 3

one would see that the desired multiplicity is one for there is only one way to
satisfy the above theorem.
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First we consider the case where p + q = n and H = Sp ×Sq. Then we have the
following theorem:

Theorem 2.2. Maintaining the above notations the restriction of V F
n to H is⊕

D,E

cF
D,E(V D⊗V E) where cF

D,E is the Littlewood-Richardson coefficient correspond-

ing to the partitions D,E, F , that is the number of Littlewood-Richardson skew
tableaux on F \D having content E.

Moreover we are interested in two special cases:

1. E has content (q, 0, 0, 0, 0 . . . ) ( trivial representation ). In this case cF
D,E = 1

if F \D is a horizontal skew strip or is equal to zero otherwise.

2. E has content (1, 1, 1, . . . , 1, 1, 1, 0, 0, . . . ) ( sign representation ). In this case
cF
D,E = 1 if F \D is a vertical skew strip or is equal to zero otherwise.

The last two statements are consequences of the Pieri rule. See Fulton’s book
[3]. We wish to compute cF

D,E when

D = with depth p and E = with depth q.

¿From the previous theorem cF
D,E = 1 if and only if F is obtained from D by

adding q boxes in a vertical skew strip. It is customary to label the p boxes in D
with the digit 1 and the added q boxes with the digit 2. Here is an example:

F =

1 2
1 2
1 2
1 2
1
1
1
1
1
2
2 F⊥ =

1 1 1 1 1 1 1 1 1 2 2
2 2 2 2

Hence cF
D,E = 1 exactly when F⊥ has content (p, q, 0, 0, . . . ).

As another example we choose p = 3 and q = 2.

One finds that the only represenations of S5 containing a sign representation of
S3 × S2 are the one parametrized by the following partitions:
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[2, 2, 1] = [2, 1, 1, 1] = [1, 1, 1, 1, 1] =

which correspond to the following transposes with content (3,2):

[2, 2, 1]⊥ =
1 1 1
2 2 [2, 1, 1, 1]⊥ =

1 1 1 2
2 [1, 1, 1, 1, 1]⊥ = 1 1 1 2 2

Next we give a proof for Theorem 2.1.

Proof. This will be done by induction. The above discussion shows that the theorem
is true for k = 2. Hence

V F
n |Sp1+...pk−1×Spk

=
⊕

cF
D,EV D

p1...pk−1
⊗ V E

pk
.

By induction we have

V F
n |Sp1×···×Spk−1×Spk

=
⊕

cF
D,E [cEK1

∅,D1
cE2
E1,D2

. . . c
Ek−1
Ek−2,Dk−1

V D1
p1
⊗· · ·⊗V Dk−1

pk−1
]⊗V E

pk
.

Here Ek−1 = D. Relabel E with Dk to obtain

V F
n |Sp1×···×Spk−1×Spk

=
⊕

c
EK1
∅,D1

cE2
E1,D2

. . . c
Ek−1
Ek−2,Dk−1

cF
Ek−1,Dk

V D1
p1

. . . V Dk−1
pk−1

⊗V Dk
pk

.

In particular we are looking for sign representations:

Di = with depth pi

which has non-zero multiplicity if and only if E1 = D1 and Ei is obtained form
Ei−1 by adding pi boxes in a vertical skew strip. More precisely, starting with :

E1 = D1 =

1
1
1
1
1
1
1
1
1
1
1
1
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there are p2 + 1 possibilities of getting tableaux of the form:

E2 =

1 2
1 2
1 2
1 2
1
1
1
1
2
2

To obtained a correct E3 we only need to add 3’s as follows:

E3 =

1 2 3
1 2 3
1 2 3
1 2
1 3
1 3
1
1
2
2
3
3

adding p3 boxes to the previous tableau.
One sees clearly that all the information will be available in Ek labeled accord-

ingly. In other words, we can generated all the possible young tableaux by counting
all boxes labeled appropriately with numbers from 1 to k.

The transpose of Ek is a is a semi-standard tableau of shape F⊥ and content
(p1, p2, . . . , pk, 0, 0 . . . ).

Conversely if one starts with a semi-standard tableaux of shape F⊥ and content
(p1, p2, . . . , pk, 0, 0 . . . ), then one can reverse the process to obtain a sequence of
diagrams E1, . . . , Ek satisfying the above condition. �

Example 2.3. Let k = n = 4. Then p1 = p2 = p3 = p4 = 1. We can compute
the multiplicity of sign representation in each case using the previous theorem as
follows:

F = F⊥ =

1
2
3
4 multiplicity = 1

F = F⊥ = {

1 2
3
4 ,

1 3
2
4 ,

1 4
2
3 } multiplicity = 3
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F = F⊥ = {
1 2
3 4 ,

1 3
2 4 ,

1 4
2 3 } multiplicity = 3

F = F⊥ = {
1 2 3
4 ,

1 3 4
2 ,

1 2 4
3 } multiplicity = 3

F = F⊥ = 1 2 3 4 multiplicity = 1

2.1. Algorithm. The Levi factors in type A are all of the form:

LΠ = Sπ1 × · · · × Sπk−1 × Sπk
with

∑
i

πi = n

Let D be partinion of n and V (D) the irreducible representation of Sn corre-
sponding to D. We shall denote by m(Π, D) the multiplicity of sgn(Lπ) in V (D).
Then

m(Π, D) = KD⊥Π the number of semi-standard Young tableaux of Shape D⊥

and contents Π = (π1, . . . , πk.0, 0, . . . )

Denote by  L(V ) = {Π|m(Π, D) 6= 0}.  L(V ) is called the Levi set of V , it is the
collection of all Levi sugroups of Wn admittiing sign representation on V . Given
 L(V ) we would like to recover the partition D. This is done using the following
algorithm which computes the rows of D⊥. Observe that LΠ is in  L(V ) if and only
if there exists a semi-standard tableau of shape D and content Π.

1. To compute the first row find:

[D⊥]1 = {Π = (max π1 = d1, . . . , . . . ) : Π ∈  L(V )}
2. To compute the second row find:

[D⊥]2 = {Π = (d1, d2 = max π2, . . . , . . . ) : Π ∈ [D⊥]1}
...
...
...
i. To compute ith row find:

[D⊥]i = {Π = (d1, . . . , di = max πi, . . . , . . . ) : Π ∈ [D⊥]i−1}
...

...
k. To compute last row find:
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[D⊥]i = {Π = (d1, . . . , . . . dk = max πk) : Π ∈ [D⊥]k−1}
...

It is clear that the algorithm will terminate and that the orbit desired is the one
associate with the partition D = (d1, d2, . . . , dk).

We shall now turn our attention to the types B and C.

3. Types B and C

First, we describe a useful combinatorial representational of the Weyl groups.
Consider the following graph:

•1 •2 •3 . . . •n−1 •n

•1̄ •2̄ •3̄ . . . •n−1 •n̄

The automorphism group, Wn , of this graph permutes the vertices while keeping
edge incidence unchanged. In other words it permutes edges and vertices on the
same edge. The subgroup of Wn that stabilizes the edges is of course isomorphic to
Sn. Moreover the kernel of this action on the edges is a normal subgroup isomorphic
to (Z/2Z)n. Finally, we see that Sn ∩ (Z/2Z)n = e, the identity element in Wn.
Since Wn ⊆ Sn × (Z/2Z)n, we conclude that

Wn = (Z/2Z)n o Sn.

Hence Wn is isomorphic to the Weyl groups of types B and C.
Our next step is to describe the irreducible representations of Wn. We shall use

Proposition 25 in Serre [5]. From now on we let G = Wn, H = Sn andA = (Z/2Z)n.
Hence:

G = AoH
The irreducible representations of G will be built from those of certain subgroups

of H using the method of little groups of Wigner and Makey. Since the character
table of Z/2Z is given by :

1 -1
χ1 1 1
χ−1 1 -1

we conclude that the irreducible characters of A are :

χε1 ⊗ χε2 ⊗ χε3 ⊗ . . . χεn−1 ⊗ χεn with εi = ±1.

Since A is Abelian the irreducible characters of A are of degree 1 and form a
group X = Hom(A, C∗). The group G acts on X by

sχ(a) = χ(s−1as) for s ∈ G, χ ∈ X, a ∈ A.

Observe that A acts trivially on X. So we should try to understand the action
of H on X.
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Lemma 3.1. H acts on X by permuting the εi’s.

Proof. �

Keeping in mind that χ1 ⊗ χ−1 6= χ−1 ⊗ χ1 we wish to describe the orbits of H
on X. We see that every character of A is conjugate under the action of H to a
unique character of the form

χ−1 ⊗ χ−1 ⊗ χ−1︸ ︷︷ ︸
i

⊗ . . . χ1 ⊗ χ1 ⊗ χ1︸ ︷︷ ︸
n−i

.

This is a system of representatives for the orbits. For each χi let Hi be the
centralizer of χi in H, that is the set of elements h ∈ H such that h(χi) = χi.
Observe that

Hi ' Si × Sn−i.

And we define Gi = A oHi ' Wi ×Wn−i as the corresponding subgroup of G.
Now we extend χi to Gi by setting

χi(ah) = χi(a) for a ∈ A, h ∈ Hi

Since h(χi) = χi for all h ∈ Hi we conclude that χ is a character of Gi. In other
words the extended χi only looks at edge flips from the i-component Wi of G.

Let ρ be an irreducible representation of Hi then

ρ = ρD
i ⊗ ρE

n−i

where ρD
i is the Specht module Si indexed by the partition D. Composing ρ

with the canonical projection Gi → Hi we obtain ρ̃, an irreducible representation
of Gi. Since χi is of degree 1, χi ⊗ ρ̃ is an irreducible representation of Gi of degree
equal to that of ρ.

Define Θi,ρ = IndGGi
χi ⊗ ρ̃ = IndWn

Wi×Wn−i
χi ⊗ ρ̃. Then

Proposition 3.2. Maintaining the above notations,
(a) Θi,ρ is irreducible.
(b) if Θi,ρ ' Θi′,ρ′ then i = i′ and ρ ' ρ′.
(c) Every irreducible representation of G is isomorphic to one of the Θi,ρ.

Proof. See Serre [5] Proposition 25. �

In order to develop a combinatorial theory it is more appropriate to use the
parametrization in terms of the partitions D and E since they contain all the
needed information to specify ρ and i.

Our next step is to describe a branching law for Θi,ρ when restricted to WL, the
Weyl group of a Levi subalgebra L ⊆ g, the Lie algebra of G. Of course WL is a
subgroup of G.

Recall that in this case all Levi subalgebras can be represented by a Dykin
diagram of the form:

s c c. . . s. . . c c
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where the roots represented by filled circles are not part of the subsystem that
generates the Levi subalgebra. Consequently the Weyl group WL is ether of the
form:

WL = Sπ1 × Sπ2 × · · · × Sπj−1 ×Wπj

or

WL = Sπ1 × Sπ2 × · · · × Sπj−1 × Sπj

with
j∑

i=1

πi = n and Wπj = (Z/2Z)πj o Sπj .

Let G = Wn, H = Wi ×Wn−i and K = WL. Maintaining the above notations,
we would like to understand ResKIndGHχi ⊗ ρ̃.

In order to proceed we will need a set of representatives S, of the double cosets
H\G/K. We describe an element of G as a signed directed bipartite graph as
follows:

•1

•2

•3

...

•n

•1

•2

•3

...

•n

+

''OOOOOOOOOO
−

77oooooooooo

+ //

+ //

If an edge (x, y) is labeled with a minus sign then x and x̄ are switched before
the permutation occurs otherwise no switching takes place. For example under the
action of the above permutation the original graph will be transformed into:

•2 •1̄ •3 . . . •n−1 •n

•2̄ •1 •3̄ . . . •n−1 •n̄

If we acted by

•1

•2

•3

...

•n

•1

•2

•3

...

•n

−

��?
??

??
??

??
??

?? −
77oooooooooo

+
77oooooooooo

+ //
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then the image would be:

•2̄ •3 •1̄ . . . •n−1 •n

•2 •3̄ •1 . . . •n−1 •n̄

if we denote by g1 the first signed permutation and let g2 be the second one then
g2g1 is given by:

•1

•2

•3

...

•n

•1

•2

•3

...

•n

+ //

−

''OOOOOOOOOO
+

77oooooooooo

+ //

The domain of each permutation is partitioned into j subsets : Eπ1 , Eπ2 , . . . Eπj

such that the edges in |Eπi
| = πi and the edges in Eπi

are permuted by Sπi
or Wπi

while its domain is partitioned into two subsets Ek with |Ek| = i and En−k with
|En−k| = n− k such that the edges in Ek are permuted by Wk and those in En−k

are permuted by Wn−k. Given a permutation we can make all the sign + by
multiplying on the left by element of H using the appropriate permutations and
flipping back if necessary. So that for each Eπi

we obtain the following diagram,
neglecting the signs for now on:

•πi
1

•πi
2

•πi
3

...

•πi
i

•1

•2

•3

...

•i+1

...

•n

OOOOOOOOO

??
??

??
??

??
??

??
??

??
??

??
??

?

Here is a rough but useful interpretation of the above picture: for each Epi
we

arranged to have no crossed edges and to have the first qi edges permuted to edges
in Ek while the remaining πi − qi are permuted to edges in En−k. So at the end
we see that every permutation is conjugate to a permutation of the class describe
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above. Within each double coset there is only one permutation that can be used to
do this. Therefore the normal form obtained in this fashion is unique.

To specify each normal form we only need to know how many arrows from each
Eπi

go to Ek. More precisely the double cosets are indexed by j-tuples

Q = {q1, q2, . . . , qj} with 0 ≤ qi ≤ πi and
j∑

i=1

qi = |Ek|.

Let SQ be the set of representatives defined by Q. For s ∈ SQ, let Hs =
sHs−1 ∩K, which is a subgroup of K. If ρ is any finite dimensional representation
of H then we can define a representation of ρs of Hs by setting

ρs(x) = ρ(s−1xs), for x ∈ Hs.

Since Hs is a subgroup of K the induced representation IndK
Hs

ρs is well defined.
The following proposition gives the desired decomposition.

Proposition 3.3. ResKIndGHχi ⊗ ρ̃ =
⊕

s∈SQ

IndK
Hs

ρs.

Proof. See Serre [5] Proposition 22. �

We wish to compute the multiplicity of the signed representation which is in fact
the dimension of

Hom(sign(WL),
⊕

s∈SQ

IndWL

Hs
ρs).

Since Hom is an additive functor this is equal to⊕
s∈SQ

Hom(sign(WL), IndWL

Hs
ρs).

But Ind and Res are adjoint functors. So the preceding expression is equivalent
to ⊕

s∈SQ

Hom(ResWL

Hs
sign(WL), ρs) =

⊕
s∈SQ

Hom(sign(Hs), ρs).

Therefore the multiplicity that we are looking for is the sum over Q of the
multiplicitie of sign(Hs in ρs for s ∈ Q. So we need to understand the group Hs

and the representation ρs for all s ∈ Q.
Observe that H = Wi ×Wn−i = Stab{e1, e2, . . . ei}, in other words it stabilizes

the edges that mapped to edges in Ei. Moreover

s−1Hs = Stab{s−1e1, s
−1e2, . . . s

−1ei}.

Consequently in each Eπi Hs permutes the edges that mapped to Ei between
themselves and does the same thing to those that are mapped to En−i. Hence we
must have either

Hs = Sq1 × Sπ1−q1 × Sq2 × Sπ2−q2 × · · · × Sqj
× Sπj−qj

or
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Hs = Sq1 × Sπ1−q1 × Sq2 × Sπ2−q2 × · · · ×Wqj
×Wπj−qj

.

To obtain ρs, we conjugate Hs back to H. As before we must have either

sHss
−1 = Sq1 × Sq2 × · · · × Sqj

× Sπ1−q1 × Sπ2−q2 × · · · × Sπj−qj

or

sHss
−1 = Sq1 × Sq2 × · · · ×Wqj × Sπ1−q1 × Sπ2−q2 × · · · ×Wπj−qj

Conjugation preserves parity. Hence:

mult(sign(Hs), ρs) = mult(sign(sHss
−1), ρ).

We may take ρ = χi ⊗ ρD
i ⊗ ρE

n−i as a representation of Wi ×Wn−i. Hence we
have two possible cases:

• The multiplicity of sign(Sq1 × Sq2 × · · · × Sqj ) in ρD
i is the # of semi-standard

tableaux of shape D⊥ and content (q1, q2, . . . , qj) that is KD⊥Q. The multiplicity
of sign(Sπ1−q1 ×Sπ2−q2 × · · · × Sπj−qj

) in ρE
n−i is KE⊥(Π−Q). The factor χi is one

dimensional. It restricts to the trivial representation. Here Π = {π1, π2, . . . , πj}.

• Since Wqj = (Z/2Z)qj o Sqj and Wπj−qj = (Z/2Z)πj−qj o Sπj−qj we only have
to deal with the extra information coming from χi on (Z/2Z)qj and (Z/2Z)πj−qj o
Sπj−qj . We want it to be a sign representation on both. The only way that could
happen is when πj = qj . Hence we obtain the same formula as above except that
it will be taken over Q with πj = qj .

These two cases lead to the following formula:

mult(sign(Hs), ρs) = KD⊥QKE⊥(Π−Q).

The desired multiplicity is obtained is obtained by summing over the H\G/K
double cosets.

3.1. Algorithm. Up to conjugacy the Levi factors in type B or C are all of the
form:

LΠ = Sπ1 × · · · × Sπk−1 × Sπk
with

∑
i

πi = n

or

Lk
Π = Sπ1 × · · · × Sπk−1 ×Wπk

with
∑

i

πi = n

Define Li
Π = Sπ1 × · · · × Wπi

× · · · × Sπk−1 × Sπk
. Observe that Li

Π ' Lk
Π′ for

some Π′ and the two subgroups admit the same branching multiplicities.
Let D and E be Young diagrams such that |D|+ |E| = n. Denote by V the irre-

ducible of Wn corresponding to (D,E). Finally, let m(Π, D,E) be the multiplicity
of the sgn(LΠ) in V and m(Π, i,D,E) the multiplicity of the sgn(Li

Π) in V . Then
from the above theorem we have:
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m(Π, D, E) =
∑

λ+µ=π

KDλ
KEµ).

This is the number of ordered pairs of semi-standard Young tableaux such that
the first has shape D, the second has shape E and the sum of the two contents is Π.
Moreover LΠ is in L(V ) if and only if there exists a pair of semi-standard tableaux
with shapes D and E and content sum Π. Similary

m(Π, i,D,E) =
∑

λ+µ=Π,λi=0

KDλ
KEµ .

Li
Π is in L(V ) if and only if there exists an ordered pair of semi-standard tableaux

with shapes D and E and content sum Π with all the i′s appearing in the second
tableau.

Given  L(V ) we would like to recover the pair of partitions (D,E). This is done
using the following algorithm which computes the rows of (D,E). This algorithm
is similar to the type A algorithm. Let di and ei denote the ith rows D⊥ and E⊥

respectively. The algorithm proceeds as follows:

d1 + e1 = max {π1|Lπ ∈ L(V )}
e1 = max {π1|L1

π ∈ L(V )}
d2 + e2 = max {π2|L(d1+e1,π2,... ) ∈ L(V )}

e2 = max {π2|L2
(d1+e1,π2,... ) ∈ L(V )}

...
...

di + ei = max {πi|L(d1+e1,...,di−1+ei−1,πi,... ) ∈ L(V )}
ei = max {π2|Li

(d1+e1,...,di−1+ei−1,πi,... )
∈ L(V )}

4. Type D

If g is of type D then its Weyl group Wn is a subgroup of of a Weyl group of
type B or C of order 2. Furthermore the set of irreducible representations of Wn is
in one to one correspondence with the set of unordered pairs {D,E} of partitions
such that |D|+ |E| = n except that each pair {D,D} corresponds to two irreducible
representations denoted by {D,D}+ and {D,D}−.

We say that a subgroup L of Wn a Levi subgroup if L is the Weyl group of a
Levi subalgebra of g. Let αn−1 and αn be the last two non connected nodes in the
Dynkin diagram of type Dn with n ≥ 4. We have three kinds of Levi subgroups:

• If αn is not selected then L = LΠ = Sπ1 × · · · × Sπk−1 × Sπk
with

∑
i

πi = n.

• If αn and αn−1 are both selected then L = Lk
Π = Sπ1 × · · · × Sπk−1 ×Wπk

×
Sπk+1 × · · · × Sπj

with
∑
i

πi = n..

• Otherwise L = L̃Π: image of LΠ under the outer automorphism.

Using the Wigner-Makey little groups method described above, we have the
following theorem:
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Theorem 4.1. Maintaining the above notations and letting m(Π̃, {D,E}) be the
multiplicity of the sgn(L̃Π) in V :

If D 6= E then

m(Π, {D,E}) = m(Π̃, {D,E}) =
∑

λ+µ=Π

KDλ
KEµ

and
m(Π, k, {D,E}) =

∑
λ+µ=Π,λkµk=0

KDλ
KEµ

.

Moreover,

m(Π, {D,D}+) = 1/2
∑

λ+µ=Π,λ6=µ

KDλ
KDµ

+
∑

2λ=Π

K2
Dλ

,

m(Π̃, {D,D}+) = 1/2
∑

λ+µ=Π,λ6=µ

KDλ
KDµ ,

m(Π, k, {D,D}±) = 1/2
∑

λ+µ=Π,λ6=µ,λkµk=0

KDλ
KDµ

,

m(Π, {D,D}−) = 1/2
∑

λ+µ=Π,λ6=µ

KDλ
KDµ

,

m(Π̃, {D,D}−) = 1/2
∑

λ+µ=Π,λ6=µ

KDλ
KDµ +

∑
2λ=Π

K2
Dλ

,

4.1. Algorithm. Again we define L(V ) to be the collection of all Levi subgroups of
G admitting sgn representations on V . We can now give an algorithm for recovering
the pair of Young tableaux {D,E}.

1. Compute

α1 = max {π1|Lπ ∈ L(V )}
α2 = max {π2|L(α1,π2,... ) ∈ L(V )}

...
...

αi = max {πi|L(α1,...,αi−1,πi,... ) ∈ L(V )}
Stop when

∑
αk = n.

2. Compute

β1 = max {π1|L̃π ∈ L(V )}

β2 = max {π2|L̃(β1,π2,... ) ∈ L(V )}
...

...
βi = max {πi|L̃(β1,...,βi−1,πi,... ) ∈ L(V )}
Stop when

∑
βk = n.

3. If αi 6= βi for some i then either all αi’s are even and one (or more) of the βi’s
is (are) odd, or the other way around.

If all the αi’s are even then set αi := αi/2.
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Stop: the representation V is {D,D}+ for D = {α1, α2. . . . αi}.
If all the βi’s are even then set βi := βi/2.

Stop: the representation V is {D,D}− for D = {β1, β2, . . . βi}.

4. If αi = βi for all i then

compute:

d1 = max {π1|L1
π ∈ L(V )}

d2 = max {π2|L2
(α1,π2,... ) ∈ L(V )}

...
...

di = max {πi|Li
(α1,...,αi−1,πi,... )

∈ L(V )}

Stop when when some dk > αk/2 .( This guaranteed to happen as a consequence
of the above multiplicity theorem.)

compute:

fk+1 = max {πk+1|Lk
(α1,...,αi−1,dk,πk+1... ) ∈ L(V )}

dk+1 = fk+1 + dk − αk

fk+2 = max {πk+2|Lk+1
(α1,...,αk−1,dk,fk+1,πk+2... ) ∈ L(V )}

dk+2 = fk+2 + dk+1 − αk+1

...
...

Stop when all dj ’s are obtained and then set ej = αj − dj for all j.

Stop: the representation V is {D,E} for D = {d1, d2, . . . dj} and E = {e1, e2, . . . ej}

4.2. Sketch of a proof of correctness of the above algorithm. Observe that
if αi is different from βi for any i then the representation is either {D,D}+ or
{D,D}− because the multiplicity formulas for LΠ and L̃P i are the same for distinct
diagrams. In this case let k be the number of parts of D; then using a tableau-
counting argument similar to that given in types A and B above, we see that
αi = βi = 2di for 1 ≤ i ≤ k − 1 but αk 6= βk since the unique tableau-pair
of content sum (2d1, . . . , 2dk) is counted by only one of the formulas above for
m(Π, {D,D}±) and m(Π̃, {D,D}±). In fact this argument shows that αk and βk

differ by one, so that exactly one of them is even and this one is consequently equal
to 2dk.

Similarly, if αi = βi for all i then their common value is di + ei, and D and E
are distinct. Let k be the least integer for which dk 6= ek. Relabeling D and E if
necessary, we can assume that dk > ek whence dk > αk/2 and di = ei = αi/2 for
i < k. The algorithm now follows immediately by tableau-counting.

5. Examples Using the Atlas Data

We shall use the data provided by the Atlas software in order to give some ex-
amples using the algorithms described above. In all cases the actual nilpotent orbit
is obtained by mapping the results given by the algorithms through the Springer
correspondence. Procedures for carrying out such mappings are explicitly available
in section 13.3 of [2]. Therefore we shall use them without further explanation and
trust that the interested readers will consult the suggested reference for the higher
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rank cases. For each type we will use a cell from the Atlas output. For the reader’s
convenience we shall give the specific atlas commands that generate the cells.

5.1. Type A. Let G = A5.

[alfred-gerard-noels-computer:/usr/local/atlas] anoel% ./atlas.exe
This is the Atlas of Reductive Lie Groups Software Package version 0.3.
Build date: Mar 16 2008 at 17:13:20.
Enter "help" if you need assistance.

empty: wcell
Lie type: A5
elements of finite order in the center of the simply connected group:
Z/6
enter kernel generators, one per line
(ad for adjoint, ? to abort):

enter inner class(es): s
(weak) real forms are:
0: sl(3,H)
1: sl(6,R)
enter your choice: 1
possible (weak) dual real forms are:
0: su(6)
1: su(5,1)
2: su(4,2)
3: su(3,3)
enter your choice: 3

The output consist of eighteen cells. We shall use cell number 13.

// cell #13:
0[70]: {1,3,5} --> 1,2,4
1[90]: {1,4} --> 0,3
2[95]: {2,5} --> 0,3
3[113]: {2,4} --> 1,2,4
4[126]: {3} --> 3

The data of interest are within the brackets. Each set {αi, αk, . . . αl} consists of
simple roots and therefore defines a Levi factor. The Atlas output for each cell is a
collection of Levi factors for which W, in this case S6, admits a sign representation.
The list {1, 3, 5} tells us that W admits a sign representation when restricted to
the Weyl group of the Levi defined by the simple roots α1, α3, and α5 which is of
type A1 ×A1 ×A1.

The algorithm computes the first row by finding the longest string of consecutive
simple roots and add 1 to it. In this case we have π1 = 2. Next we find that π2 = 2
and finally we end up with the list {1, 3, 5} which gives π3 = 2. So the nilpotent
orbit is parametrized by the partition [3, 3].
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5.2. Type C. Let G = C3.

[alfred-gerard-noels-computer:/usr/local/atlas] anoel% !!
./atlas.exe
This is the Atlas of Reductive Lie Groups Software Package version 0.3.
Build date: Mar 16 2008 at 17:13:20.
Enter "help" if you need assistance.

empty: wcell
Lie type: B3
elements of finite order in the center of the simply connected group:
Z/2
enter kernel generators, one per line
(ad for adjoint, ? to abort):

enter inner class(es): s
(weak) real forms are:
0: so(7)
1: so(6,1)
2: so(5,2)
3: so(4,3)
enter your choice: 3
possible (weak) dual real forms are:
0: sp(3)
1: sp(2,1)
2: sp(6,R)
enter your choice: 2
Name an output file (return for stdout, ? to abandon):

// cell #10:
0[16]: {2,3} --> 1
1[23]: {1,3} --> 0,2
2[26]: {1,2} --> 1,3
3[34]: {1,3} --> 2,4
4[38]: {2,3} --> 3

We see that d1, +e1 = 3 . This comes from the list {1, 2}. The list {2, 3} tells us
that e1 = 2. So d1 = 1. So the pair of partitions is ([1], [1, 1]) which is associated
to the nilpotent [2, 2, 1, 1] by the Springer correspondence.

5.3. Type C. Let G = D4.

[alfred-gerard-noels-computer:/usr/local/atlas] anoel% !!
./atlas.exe
This is the Atlas of Reductive Lie Groups Software Package version 0.3.
Build date: Mar 16 2008 at 17:13:20.
Enter "help" if you need assistance.
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empty: wcell
Lie type: D4
elements of finite order in the center of the simply connected group:
Z/2.Z/2
enter kernel generators, one per line
(ad for adjoint, ? to abort):

enter inner class(es): s
(weak) real forms are:
0: so(8)
1: so(6,2)
2: so*(8)[0,1]
3: so*(8)[1,0]
4: so(4,4)
enter your choice: 4
possible (weak) dual real forms are:
0: so(8)
1: so(6,2)
2: so*(8)[0,1]
3: so*(8)[1,0]
4: so(4,4)
enter your choice: 4
Name an output file (return for stdout, ? to abandon):

// cell #17:
0[10]: {1,3,4} --> 1,5,6,7
1[17]: {2} --> 0
2[37]: {2,4} --> 1,5,6,9
3[41]: {2,3} --> 1,5,7,9
4[43]: {1,2} --> 1,6,7,9
5[53]: {3,4} --> 2,3
6[58]: {1,4} --> 2,4
7[63]: {1,3} --> 3,4
8[81]: {1,3,4} --> 5,6,7,9
9[94]: {2} --> 8

The algorithm first computes the αi’s and the β′is as follows:
To find α1 we look for the longest consecutive string which does not contain

roots 4. This is given by the set {1, 2}. Hence we conclude that α1 = 3.
To find β1 we look for the longest consecutive string which does not contain roots

3. This is given by the set {1, 2}. Hence we conclude that β1 = 3.
The next step gives us α2 = 1 and β2 = 1. Since αi = βi for all i’s, we find that

d1 = 2 from the set {{1, 3, 4}, {3, 4}}. Since d1 > α1/2 we move to compute f2

which turns out to be 2. So d2 = 2 + 2− 3 = 1 , e1 = 3− 2 = 1 and e2 = 1− 1 = 0.
We obtain the pairs of partitions ([2, 1], [1]) which corresponds to the nilpotent
[3, 1, 1].
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5.4. Some more examples in higher ranks. Let G = B5.

[alfred-gerard-noels-computer:/usr/local/atlas] anoel% ./atlas.exe
This is the Atlas of Reductive Lie Groups Software Package version 0.3.
Build date: Mar 16 2008 at 17:13:20.
Enter "help" if you need assistance.

empty: wcell
Lie type: B5
elements of finite order in the center of the simply connected group:
Z/2
enter kernel generators, one per line
(ad for adjoint, ? to abort):

enter inner class(es): s
(weak) real forms are:
0: so(11)
1: so(10,1)
2: so(9,2)
3: so(8,3)
4: so(7,4)
5: so(6,5)
enter your choice: 5
possible (weak) dual real forms are:
0: sp(5)
1: sp(4,1)
2: sp(3,2)
3: sp(10,R)
enter your choice: 3
Name an output file (return for stdout, ? to abandon):

// cell #39:
0[420]: {1,2,4,5} --> 2,8,10,21,28
1[469]: {1,2,3,5} --> 5,6,13,16
2[500]: {1,3,5} --> 0,4,6,29
3[542]: {1,2,4,5} --> 7,10,18,20,21
4[552]: {1,3,4} --> 2,8,11,21,27
5[553]: {1,2,4} --> 1,8,9,10,18,21
6[592]: {2,3,5} --> 2,8
7[624]: {1,3,5} --> 3,12,13,23
8[636]: {2,4} --> 4,6,17
9[639]: {1,3,4} --> 5,15,16
10[663]: {1,2,5} --> 5,16,17,24
11[668]: {1,3,5} --> 4,14,17,23
12[691]: {1,3,4} --> 7,18,19,21,27
13[697]: {2,3,5} --> 7,18
14[708]: {1,4,5} --> 11,20,21
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15[710]: {2,3,4} --> 8,9,18,22,27
16[728]: {1,3,5} --> 9,10,21,22
17[730]: {2,5} --> 8,11
18[748]: {2,4} --> 12,13,24
19[752]: {1,3,5} --> 12,24,25,29
20[759]: {2,4,5} --> 14,17,23,26
21[778]: {1,4} --> 16,26
22[786]: {2,3,5} --> 15,16,17,23,24,26,29
23[797]: {3,5} --> 20,27
24[808]: {2,5} --> 18,19
25[810]: {1,4,5} --> 19,21,28
26[818]: {2,4} --> 21,22,27
27[829]: {3,4} --> 23,26,29
28[838]: {2,4,5} --> 24,25,26,29
29[851]: {3,5} --> 27,28

We have d1 + e1 = 4 given by {1, 2, 3, 5} and e1 = 2 given by the set of all the
sets that end with {4, 5}. We see then that d2 + e2 = 1 from the set {1, 2, 3, 5} and
e2 = 1 from the set {4, 5}. It follows that the corresponding pairs of nilpotent for
this representation is ([1, 1], [2, 1]).

Let G = D6.

[alfred-gerard-noels-computer:/usr/local/atlas] anoel% !!
./atlas.exe
This is the Atlas of Reductive Lie Groups Software Package version 0.3.
Build date: Mar 16 2008 at 17:13:20.
Enter "help" if you need assistance.

empty: wcell
Lie type: D6
elements of finite order in the center of the simply connected group:
Z/2.Z/2
enter kernel generators, one per line
(ad for adjoint, ? to abort):

enter inner class(es): s
(weak) real forms are:
0: so(12)
1: so(10,2)
2: so*(12)[1,0]
3: so*(12)[0,1]
4: so(8,4)
5: so(6,6)
enter your choice: 5
possible (weak) dual real forms are:
0: so(12)
1: so(10,2)
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2: so*(12)[1,0]
3: so*(12)[0,1]
4: so(8,4)
5: so(6,6)
enter your choice: 5
Name an output file (return for stdout, ? to abandon):

// cell #57:
0[1100]: {1,3,4,6} --> 3,4,17,18,30
1[1104]: {1,3,4,5} --> 3,5,17,19,30
2[1107]: {1,4,5,6} --> 3,6,30,44
3[1297]: {1,3,5,6} --> 0,1,2,7,12
4[1306]: {2,4,6} --> 0,7,8,20
5[1310]: {2,4,5} --> 1,7,10,20
6[1314]: {2,4,5,6} --> 2,7,12,20,40,43
7[1489]: {2,5,6} --> 3,4,5
8[1495]: {2,3,6} --> 4,16,18
9[1499]: {1,2,4,6} --> 4,14,18,30,34
10[1501]: {2,3,5} --> 5,15,19
11[1505]: {1,2,4,5} --> 5,14,19,30,33
12[1507]: {3,5,6} --> 6,17
13[1660]: {2,3,5,6} --> 7,8,10,12,20,21,25,28,40
14[1663]: {1,2,5,6} --> 7,9,11,21,41,42
15[1666]: {2,3,4} --> 10,20,22,25
16[1668]: {2,3,4} --> 8,20,23,28
17[1670]: {3,4} --> 12,20
18[1678]: {1,3,6} --> 8,9,23
19[1683]: {1,3,5} --> 10,11,22
20[1803]: {2,4} --> 13,17,30
21[1806]: {1,3,5,6} --> 13,14,18,19,30,35,36,44
22[1809]: {1,3,4} --> 15,19,30,33,35
23[1810]: {1,3,4} --> 16,18,30,34,36
24[1820]: {1,2,3,6} --> 18,34
25[1822]: {2,3,6} --> 15,31,35
26[1826]: {3,4,6} --> 17,31,37
27[1828]: {1,2,3,5} --> 19,33
28[1832]: {2,3,5} --> 16,32,36
29[1834]: {3,4,5} --> 17,32,37
30[1922]: {1,4} --> 20,21
31[1924]: {2,4,6} --> 20,25,26,38,40
32[1927]: {2,4,5} --> 20,28,29,39,40
33[1934]: {1,2,4} --> 22,27,41
34[1935]: {1,2,4} --> 23,24,42
35[1944]: {1,3,6} --> 22,25,38,41
36[1950]: {1,3,5} --> 23,28,39,42
37[1959]: {3,5,6} --> 26,29,40,43
38[2014]: {1,4,6} --> 30,31,35,44
39[2017]: {1,4,5} --> 30,32,36,44
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40[2020]: {2,5,6} --> 31,32,37,44
41[2031]: {1,2,6} --> 33,35
42[2038]: {1,2,5} --> 34,36
43[2054]: {4,5,6} --> 37
44[2087]: {1,5,6} --> 38,39,40

The algorithm first computes the αi’s and the β′is as follows:
To find α1 we look for the longest consecutive string which does not contain

roots #6. This is given by the set {{1, 2, 3, 5}, {1, 2, 3, 6}}. Hence we conclude that
α1 = 4.

To find β1 we look for the longest consecutive string which does not contain roots
#5. This is given by the set {{1, 2, 3, 5}, {1, 2, 3, 6}}. Hence we conclude that β1 =
4.

From {1, 2, 3, 5} and {1, 2, 3, 6} we obtain α2 = 2 and β2 = 2 respectively.
Next we find d1 = 3 from {{4, 5, 6}, {1, 4, 5, 6}}. since d1 > α1/2 we proceed to

compute f2 = 2 from {1, 4, 5, 6}. It follows that d2 = 2 + 3 − 4 = 1, e1 = 4 − 3 =
1 and e2 = 2− 1 = 1. Hence, this representation is [(2, 1, 1), (2)].
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