Stability

Jeffrey D. Adams *

March 2008

Let G be a connected reductive linear algebraic group defined over \mathbb{R} . We denote by $G(\mathbb{R})$ its \mathbb{R} -points.

1 Definitions

Definition 1. A semisimple element g in $G(\mathbb{R})$ is said to be strongly regular if the centralizer $Z_{G(\mathbb{R})}(g)$ is a Cartan subgroup.

This is a stronger notion than that of regular elements for which only the Lie algebra $\mathfrak{z}_{G(\mathbb{R})}(g)$ is required to be a Cartan subalgebra. Let us denote by $G(\mathbb{R})_{SR}$ the set of strongly regular elements. This is an open dense subset of $G(\mathbb{R})$.

Definition 2. Two strongly regular semisimple elements g, g' of G are called stably conjugate if there exists $h \in G(\mathbb{C})$ such that $hgh^{-1} = g'$.

Stable conjugacy is a weaker notion than usual conjugacy. The canonical example is the rotations $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ and $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ in $SL(2,\mathbb{R})$ which are not conjugate in $SL(2,\mathbb{R})$, but are stably conjugate by the element $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ of $SL(2,\mathbb{C})$. Any stable conjugacy class is a finite disjoint union of (usual) conjugacy classes.

If π is an irreducible representation of $G(\mathbb{R})$, the character Θ_{π} is the distribution

$$\Theta_{\pi}(f) = \operatorname{tr}(\pi(f)), \quad f \in C_c^{\infty}(G(\mathbb{R})), \tag{1}$$

where

$$\pi(f) = \int_{G(\mathbb{R})} f(g)\pi(g) \, dg. \tag{2}$$

Clearly, the definition can be extended to any finite-length representation, and we can also consider virtual representation π . Since Θ_{π} is an invariant distribution on $G(\mathbb{R})$, it is determined by Harish-Chandra's theorem by its restriction to $G(\mathbb{R})_{SR}$.

^{*}Based on a talk by J. Adams at the Atlas meeting in College Park, March 2008. Notes taken by D. Ciubotaru.

Definition 3. A virtual representation π (or character Θ_{π}) is said to be stable if $\Theta_{\pi}(g) = \Theta_{\pi}(g')$, whenever g and g' are stably conjugate strongly regular semisimple elements.

If $G(\mathbb{R})$ has equal rank, for every infinitesimal character λ and every central character χ , denote

 $\Psi_{\lambda,\chi} = \{\pi : \pi \text{ discrete series with infinitesimal character } \lambda \text{ and central character } \chi\}.$ (3)

They form an L-packet.

Theorem 1 (Shelstad). Assume $G(\mathbb{R})$ has equal rank. Then

$$\sum_{\pi \in \Psi_{\lambda,\chi}} \pi \tag{4}$$

is stable.

The definitions above make sense for any local field \mathbb{F} of characteristic 0, by replacing $G(\mathbb{C})$ with $G(\overline{\mathbb{F}})$.

Theorem 2 (Waldspurger). Let \mathbb{F} be a local field of characteristic 0, and let P = MN be an \mathbb{F} -rational parabolic subgroup. For every π_M a stable virtual representation of $M(\mathbb{F})$, the parabolically induced virtual representation $\operatorname{Ind}_{P(\mathbb{F})}^{G(\mathbb{F})}(\pi_M)$ is stable as well.

Over \mathbb{R} more is known to be true.

Theorem 3 (Shelstad). The lattice of stable virtual representations of $G(\mathbb{R})$ is spanned over \mathbb{Z} by the set

 $\{\operatorname{Ind}_{P(\mathbb{R})}^{G(\mathbb{R})}(\pi_M): \pi_M \text{ stable combination of discrete series of the form (4)}\}, (5)$

where $P(\mathbb{R})$ ranges over all $G(\mathbb{R})$ conjugacy classes of cuspidal (rational) parabolic subgroups.

One of the points of theorem 3 is that one does not need to include limits of discrete series in the basis. For example, in $SL(2,\mathbb{R})$, the stable combination of discrete series are $\pi_k \oplus \pi_{-k}$, for infinitesimal character k-1, $k \in \mathbb{Z}_{\geq 2}$, while the stable combination of limits of discrete series is $\pi_1 \oplus \pi_{-1}$ at infinitesimal character 0. But the stable combination of limits of discrete series can be regarded as parabolically induced from the Borel subgroup, $Ind_{B(\mathbb{R})}^{SL(2,\mathbb{R})}(\operatorname{sgn} \otimes 1)$, i.e., the nonspherical principal series at infinitesimal character 0.

Question. It is natural to ask if theorem 3 has a counterpart for \mathbb{F} a *p*-adic field. Of course, in this case, the combinations of discrete series (4) need to be taken with the appropriate multiplicities, since, unlike the case of $\mathbb{F} = \mathbb{R}$, the component groups parameterizing the members of an L-packet are not always abelian.

2 Stability in Atlas

We consider $\mathbb{F} = \mathbb{R}$ and the question of producing stable combinations of characters for $G = G(\mathbb{R})$. Let K be a maximal compact corresponding to the Cartan involution θ . Let W denote the (abstract) Weyl group.

For every $H \ a \ \theta$ -stable Cartan subgroup, recall that we have the notion of regular characters \widehat{H}_{ρ} (we assume the infinitesimal character is ρ). We denote by $\pi(\gamma)$ and $\overline{\pi}(\gamma)$, the standard module and the irreducible Langlands subrepresentation, respectively, attached to (the K-conjugacy class of) γ . The block equivalence on regular characters is generated by the following relation between $\gamma^1 \in \widehat{H}_{\rho}^1$ and $\gamma^2 \in \widehat{H}_{\rho}^2$:

$$\gamma^1 \sim \gamma^2$$
 if and only if $\overline{\pi}(\gamma^2)$ appears as a subquotient of $\pi(\gamma^1)$. (6)

Equivalently, a block is the smallest subset of regular characters which is closed under conjugation, cross actions, and Cayley transforms.

We identify $W(\mathfrak{g}, \mathfrak{h})$ with the abstract W. The cross action $w \times \gamma \in \hat{H}_{\rho}$, $w \in W, \gamma \in \hat{H}_{\rho}$, gives a way to produce stable virtual characters. Let $\gamma \in \hat{H}_{\rho}$ be fixed. Let W^{im} denote the imaginary Weyl group, and let $[\gamma]$ be the K-conjugacy class of γ .

Definition 4. The set

$$cp(\gamma) = \{\gamma' : \gamma' \in W^{im} \times [\gamma]\}$$

$$\tag{7}$$

is called a pseudo L-packet.

Theorem 4 (Vogan). Every block \mathcal{B} partitions into pseudo L-packets.

Let $w\gamma$ denote the usual conjugation by $w \in W$. Define the cross stabilizer of γ :

$$W_1(\gamma) = \{ w \in W(G, H) : w \times \gamma = w\gamma \}.$$
(8)

Every pseudo L-packet gives rise to a stable virtual character:

$$\sum_{w \in W^{im}/W^{im} \cap W_1(\gamma)} \pi(w \times \gamma).$$
(9)

In fact, these virtual characters form a basis for the lattice of stable virtual representations.

The indexing set may be given more precisely. Decomposes H = TA into the compact and vector parts, and set $M = Z_G(A)$ to be the centralizer of A in G. This is a Levi subgroup. Then

$$W^{im} \cap W_1(\gamma) = W(M, H). \tag{10}$$

Example. Assume $G(\mathbb{R})$ is equal rank and one chooses $H \subset K$. A particular example in this case is when $\pi(\gamma) = \overline{\pi}(\gamma)$ is a discrete series. Then $cp(\gamma)$ is the

L-packet consisting of all discrete series with the same infinitesimal character and central character as $\pi(\gamma)$, and so (9) is the same as (4).

More generally, a virtual character of the form (9) equals an induced $\operatorname{Ind}_P^G(\sum \pi_M)$, for P = MN (N is chosen so that γ is "antidominant"), where $\sum \pi_M$ is a stable L-packet sum of discrete series for M, so its stability follows from theorems 1 and 2. The identification with theorem 3 is now clear.

Example. Consider $G(\mathbb{R}) = Sp(4, \mathbb{R})$, and the large block at infinitesimal character ρ . There are 12 representations labeled $0, 1, \ldots, 11$. The block structure is as follows:

empty: type Lie type: C2 sc s main: realform (weak) real forms are: 0: sp(2)1: sp(1,1)2: sp(4,R)enter your choice: 2 real: block possible (weak) dual real forms are: 0: so(5)1: so(4,1)2: so(2,3)enter your choice: 2 Name an output file (return for stdout, ? to abandon): 0(0.6): 0 0 [i1,i1] 1 2(6, *)(4, *)1(1,6):0 [i1,i1] 0 3 (6, *)(5, *)0 (*,*) 2(2,6): 20 (4, *)0 0 [ic,i1] (*,*) 3 (5, *)3(3,6): 0 0 [ic,i1] 1 *, *) 4(4,4):1 2[C+,r1]8 4(0, 2)2(*, *) 5(5,4): 2[C+,r1]521 9(1, 3)((*,*) 6(6,5): 1 [r1,C+]6 7(0, 1)1 1 (*,*) 272.1.27(7,2): 1 [i2,C-] 6 (10, 11)22[C-,i1] 9 *, *) (10, *)8(8,3): 4 1.2.1((*,*) 1,2,19(9,3): 2 2[C-,i1] 8 (10, *)5(7,*) 3 (8, 9)10(10,0): 3 [r2,r1] 11 101,2,1,2(7, *)11(10,1): 3 3 [r2,rn] 1011 (*, *)1,2,1,2

The order in the block is obtained using blockorder as in figure 11 below.

Every block element is parameterized by a pair (x, y) (the ones after the numbering in the table above). A pseudo L-packets consists of block elements with the same y:

- {0,1,2,3} (these are the discrete series);
- {4,5};
- {6};

(11)

Figure 1: The large block for $Sp(4, \mathbb{R})$.

- {7};
- {8,9};
- {10};
- {11}.

For a block \mathcal{B} , let \mathcal{B} denote the dual block in the sense of Vogan. There is a pairing $\langle , \rangle : \mathbb{Z}[\mathcal{B}] \times \mathbb{Z}[\check{\mathcal{B}}] \to \mathbb{Z}$ defined on irreducibles and extanded by linearity. More precisely, the blocks \mathcal{B} and $\check{\mathcal{B}}$ have the same parameter set S, and for every $\gamma, \mu \in S$ one sets

$$\langle \overline{\pi}(\gamma), \overline{\check{\pi}}(\mu) \rangle = \epsilon_{\gamma,\mu} \delta_{\gamma,\mu}, \tag{12}$$

where $\epsilon_{\gamma,\mu} \in \{+1, -1\}$ is specified precisely. Recall that for example, the discrete series (if they exist) in \mathcal{B} are dual to the principal series representations.

Vogan's duality says that

$$\langle \pi(\gamma), \check{\pi}(\mu) \rangle = \epsilon_{\gamma,\mu} \delta_{\gamma,\mu}.$$
 (13)

An important criterion for stability is the following.

Theorem 5 (Vogan). Suppose $\pi = \sum a_i \pi_i$ is a virtual representation, where π_i are irreducible representations belonging to the same block \mathcal{B} . Then π is stable if and only if for every virtual representation $\check{\sigma} \in \check{\mathcal{B}}$ such that $\Theta_{\check{\sigma}}$ vanishes near zero, one has $\langle \pi, \check{\sigma} \rangle = 0$.

In order to use this criterion, one needs to produce virtual representations whose characters vanish near zero. A basis of these characters is given by virtual differences of principal series

$$\operatorname{Ind}_{P}^{G}(\sigma_{M}) - \operatorname{Ind}_{P}^{G}(\sigma_{M} \otimes \chi), \tag{14}$$

where χ is a character if the component group M/M^0 . The simplest such example is in $SL(2,\mathbb{R})$, for the minimal principal series, where P = B, $M \cong \mathbb{R}^{\times}$, and so a character vanishing near zero is $\mathrm{Ind}_{MN}^G(\mathsf{triv}) - \mathrm{Ind}_{MN}^G(\mathsf{sgn})$.

References

- [ABV] J. Adams, D. Barbasch, D.A. Vogan, Jr., Langlands classification and irreducible characters for real reductive groups, Birhauser, 1992.
- [AV] J. Adams, D.A. Vogan, Jr., Harish-Chandra's method of descent, Amer. J. Math., vol. 114, no. 6, 1992, 1243–1256.
- [Ar] J. Arthur, Unipotent automorphic representations: Conjectures, Orbites unipotentes et répresentations II, Astérisque 171-172 (1989), 13–71.
- [S] D. Shelstad, *L-indistinguishability for real groups*, Math. Ann. 259 (1982), 385–430.
- [V] D.A. Vogan, Jr., Irreducible characters of semisimple Lie groups IV, Duke Math. J., vol. 49, no. 4, 1982, 943–1073.