Multiplicities of K-types in principal series

Alessandra Pantano

joint work with Dan Barbasch

MIT, March 2007
INTRODUCTION/MOTIVATION
find the unitary dual of split G_R → discuss unitarity of Langlands quotients of principal series

$J_P(\delta, \nu) \sim P = MAN$ → signature of some Hermitian operators $A_\mu(\delta, \nu)$

$\mu \in \widehat{K}, \delta \in \widehat{M}, \nu \in a^*_C$

The intertwining operator $A_\mu(\delta, \nu)$ acts on $\text{Hom}_M(\delta, \mu)$.

PROBLEM Understand the representation of $W(\delta)$ (the stabilizer of δ in W) on the space $\text{Hom}_M(\delta, \mu), \forall \delta \in \widehat{M}, \mu \in \widehat{K}$.
Spherical unitary dual

Use spherical petite K-types to prove that $J(\nu)_\mathbb{R}$ unit. \Rightarrow $J(\nu)_{\mathbb{Q}_p}$ unit.

Barbasch-Vogan

Spherical unitary dual of split $G(\mathbb{R})$

$?$

\uparrow

candidates: $J(\nu)_{\mathbb{R}}$

$J(\nu)_{\mathbb{R}}$ unitary \iff

$A_\mu(\nu) \geq 0$, $\forall \mu \in \hat{K}$

Spherical unitary dual of split $G(\mathbb{Q}_p)$

\checkmark

\uparrow

candidates: $J(\nu)_{\mathbb{Q}_p}$

$J(\nu)_{\mathbb{Q}_p}$ unitary \iff

$A_\psi(\nu) \geq 0$, $\forall \psi \in \hat{W}_{relev}$
Non-spherical unitary dual

non-spher. unitary dual of split $G_\mathbb{R}$

use non-spherical petite K-types to investigate whether $J^G(\delta, \nu)$ unit $\Rightarrow J^{G_0(\delta)}(\nu_0)$ unit

Barbasch–Pantano

candidates: $J^G(\delta, \nu)$ \leadsto define G^{δ}

spherical unitary dual of split $G_0(\delta)$

candidates: $J^{G_0^\delta}(\nu_0)$

$J^G(\delta, \nu)$ unitary

$\Leftrightarrow A_\mu(\delta, \nu) \geq 0$ $\forall \mu \in \hat{K}$

\Rightarrow $\text{Hom}_M(\delta, \nu)$ \Leftarrow

$J^{G_0^\delta}(\nu_0)$ unitary

$\Leftrightarrow A_\psi(\nu) \geq 0$ $\forall \psi \in \hat{W}_0$ relevant
Two projects

BIG PROJECT

Find an inductive algorithm to compute the $W(\delta)$-representation

$\text{Hom}_M(\delta, \mu)$

→ July

SMALL PROJECT

Find an inductive algorithm to compute

$\text{dim}[\text{Hom}_M(\delta, \mu)]$

→ today
Plan of the talk

- Standard Notation
- Multiplicities of K-types in principal series
- Some easy examples (linear case)
- Non-linear case (what we know...)
- An inductive algorithm to compute multiplicities
- Generalization
PART 1

- **Standard Notation**

- Multiplicities of K-types in principal series

- Some easy examples (*linear case*)

- Non-linear case (*what we know...*)

- An inductive algorithm to compute multiplicities

- Generalization
Notation

- **G** a real reductive Lie group ← *split group*
- **K** the maximal *compact* subgroup of **G**
- **K-types** the irreducible representations of **K**
 \[\mu = \sum a_j \omega_j \text{, with } a_j \geq 0 \text{ and } \omega \text{ fundamental} \]
- **θ** a Cartan involution on **g**
- **g = ℱ ⊕ ℓ** the Cartan decomposition of **g**
- **a** a maximal abelian subspace of **p**, \(A = \exp(\mathfrak{a}) \)
- **M = Z_K(\mathfrak{a})** ← *finite subgroup of K*
- **P = MAN** a minimal parabolic subgroup of **G**
Minimal Principal Series

\[\begin{align*}
P = MAN & \quad \text{minimal parabolic subgroup of } G \\
(\delta, V^{\delta}) & \quad \text{irreducible representation of } M \\
\nu : \mathfrak{a} \to \mathbb{C} & \quad \text{dominant character of } A
\end{align*} \]

principal series \[I_P(\delta, \nu) = \text{Ind}^G_{MAN}(\delta \otimes \nu \otimes \text{triv}) \]

\(G\) acts by left translation on the space of functions

\[\{ F : G \to V^{\delta} : F |_K \in L^2, F(x\text{man}) = e^{-(\nu+\rho)\log(a)}\delta(m)^{-1}F(x), \ \forall \text{man} \in P \} \]
PART 2

- Standard Notation

- Multiplicities of K-types in principal series

- Some easy examples (linear case)

- Non-linear case (what we know...)

- An inductive algorithm to compute multiplicities

- Generalization
Multiplicities of K-types in Principal Series

Which irreducible representations μ of K appear in the principal series $I_P(\delta, \nu)$, and with what multiplicities?
The multiplicity of a K-type μ in $I_P(\delta, \nu)$ is defined by

$$m(\mu, I_P(\delta, \nu)) = \dim [\text{Hom}_K(\mu, \text{Res}_K I_P(\delta, \nu))]$$

By Frobenius reciprocity, it is independent of the parameter ν:

$$m(\mu, I_P(\delta, \nu)) = m(\delta, \mu) = \dim [\text{Hom}_M(\delta, \text{Res}_M \mu)]$$

\Rightarrow We need to study the restriction of K-types to M.
PART 3

- Standard Notation
- Multiplicities of K-types in principal series

 - Some easy examples (linear case)

- Non-linear case (what we know...)
- An inductive algorithm to compute multiplicities
- Generalization
The example of $SL(2, \mathbb{R})$

- $G = SL(2, \mathbb{R})$, $K = SO(2, \mathbb{R})$, $M = \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\} \simeq \mathbb{Z}_2$

- $\hat{K} = \mathbb{Z}$, $\hat{M} = \{\text{trivial, sign}\}$

- $\text{Res}_M(\mu_n) = \begin{cases} \text{trivial} & \text{if } n \text{ is even} \\ \text{sign} & \text{if } n \text{ is odd} \end{cases}$

$$\Rightarrow m(\mu_{2l}, I_P(\delta, \nu)) = \begin{cases} 1 & \text{if } \delta \text{ is trivial} \\ 0 & \text{if } \delta \text{ is sign} \end{cases}$$

and $$m(\mu_{2l+1}, I_P(\delta, \nu)) = \begin{cases} 0 & \text{if } \delta \text{ is trivial} \\ 1 & \text{if } \delta \text{ is sign} \end{cases}$$
The example of $SL(3, \mathbb{R})$

- $G = SL(3, \mathbb{R}), K = SO(3, \mathbb{R})$
- $M = \{\text{diag}(\epsilon_1, \epsilon_2, \epsilon_3): \epsilon_i = \pm 1, \Pi \epsilon_i = 1\} \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$
- $\widehat{K} = \{\mathcal{H}_n\}_{n \in \mathbb{N}} = \{p(x, y, z): \text{harmonic, homog. of degree } n\}$
- $\widehat{M} = \{\text{triv} \otimes \text{triv}, \text{triv} \otimes \text{sign}, \text{sign} \otimes \text{triv}, \text{sign} \otimes \text{sign}\}$
- $\mathcal{H}_{2l} \mid_M = [tr \otimes tr]^{l+1} \oplus [tr \otimes \text{sign}]^l \oplus [\text{sign} \otimes tr]^l \oplus [\text{sign} \otimes \text{sign}]^l$

\[m(\mathcal{H}_{2l}, I_P(\delta, \nu)) = \begin{cases}
 l + 1 & \text{if } \delta = tr \otimes tr \\
 l & \text{otherwise}
\end{cases} \]

There are similar formulas for \mathcal{H}_{2l+1}
Suppose that

- \mathbb{G}: a simple, connected and simply connected real reductive algebraic group
- G: the split real form of \mathbb{G}
- \mathring{G}: the (unique) two-fold cover of G

then

\[
\mathring{G} \text{ is non-linear and } \mathring{M} \text{ is non-abelian}
\]
• Standard Notation

• Multiplicities of K-types in principal series

• Some easy examples (*linear case*)

 • **Non-linear case** (*what we know about \widetilde{M}...*)

• An inductive algorithm to compute multiplicities

• Generalization
For each root α, we can choose a Lie algebra homomorphism

$$\phi_\alpha : sl(2, \mathbb{R}) \to g$$

such that

$$Z_\alpha = \phi_\alpha \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in t = \text{Lie}(K).$$

Exponentiating ϕ_α, we obtain

$$\Phi_\alpha : SL(2, \mathbb{R}) \to G \quad \tilde{\Phi}_\alpha : \tilde{SL}(2, \mathbb{R}) \to \tilde{G}.$$

Definition: α is **metaplectic** if $\tilde{\Phi}_\alpha$ does not factor to $SL(2, \mathbb{R})$.

If G is not of type G_2, then **metaplectic \Leftrightarrow long**, if G is of type G_2, then all roots are metaplectic.
More notation: \(\tilde{m}_\alpha = \exp_{\tilde{G}}(\pi Z_\alpha) \) and \(m_\alpha = \exp_G(\pi Z_\alpha) \)
Structure of \(\tilde{M}\)

- **GENERATORS:** \(\{\tilde{m}_\alpha\}_{\alpha \text{ simple}}\)

- **RELATIONS:** \(\tilde{m}_\alpha^2 = \begin{cases} -I & \text{if } \alpha \text{ is metaplectic} \\ +I & \text{otherwise} \end{cases} \)

 and \(\{\tilde{m}_\alpha, \tilde{m}_\beta\} = \begin{cases} (-I)^{\langle\alpha, \beta\rangle} & \text{if } \alpha \text{ and } \beta \text{ are both metaplectic} \\ +I & \text{otherwise.} \end{cases} \)

- **ELEMENTS:** Choose an ordering of the simple roots. Every element of \(\tilde{M}\) can be written uniquely in the form

 \[\varepsilon \tilde{m}_{\alpha_1}^{n_1} \tilde{m}_{\alpha_2}^{n_2} \cdots \tilde{m}_{\alpha_r}^{n_r} \]

 with \(\varepsilon = \pm 1\), and \(n_j = 0 \text{ or } 1\).
Example: $\tilde{M} \subset \tilde{E}_6$

GENERATORS: $\{\tilde{m}_{\alpha_i}\}_{i=1...6}$

RELATIONS: $\tilde{m}_{\alpha_i}^2 = -I$ for all $i = 1 \ldots 6$, and

$$\{\tilde{m}_{\alpha_i}, \tilde{m}_{\alpha_j}\} = (-I)^{\langle \alpha_i, \alpha_j \rangle} = \begin{cases} (-I) & \text{if } \alpha_i \text{ and } \alpha_j \text{ are adjacent} \\ (+I) & \text{otherwise.} \end{cases}$$

CENTER: $Z(\tilde{M}) = \{\pm I\} \cong \mathbb{Z}_2$
Example: $\tilde{M} \subset \tilde{F}_4$

GENERATORS: $\{\tilde{m}_{\alpha_i}\}_{i=1}^{4}$

RELATIONS: $\tilde{m}_{\alpha}^2 = \begin{cases} -I & \text{if } \alpha \text{ is long} \\ +I & \text{if } \alpha \text{ is short} \end{cases}$

and $\{\tilde{m}_{\alpha}, \tilde{m}_{\beta}\} = \begin{cases} (-I) & \text{if } \alpha \text{ and } \beta \text{ are both long} \\ (+I) & \text{otherwise.} \end{cases}$

CENTER: $Z(\tilde{M}) = \langle -I, \tilde{m}_{\alpha_3}, \tilde{m}_{\alpha_4} \rangle \simeq \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$
Representations of \widetilde{M}

\widetilde{M} is a cover of the abelian group M. There is an exact sequence

$$1 \to \{\pm I\} \to \widetilde{M} \to M \to 1.$$

A repr. of \widetilde{M} is called genuine if $(-I)$ does not act trivially.

- The non-genuine representations of \widetilde{M} have dim. 1. They are determined by the value of $\delta(\tilde{m}_{\alpha_i}) = \pm 1$.
- The genuine repr.s of \widetilde{M} have dim. $n = |\widetilde{M}/Z(\widetilde{M})|^{\frac{1}{2}}$. They are determined by the restriction to $Z(M)$.

$$\{\text{genuine repr.s of } \widetilde{M}\} \leftrightarrow \{\text{genuine characters of } Z(\widetilde{M})\}$$

$$\delta \rightarrow \lambda \text{ s.t. } \text{Res } \delta = \lambda^{\oplus n}$$

$$\delta \text{ s.t. } \text{Ind } \lambda = \pi^{\oplus n} \leftrightarrow \lambda$$
Every non-genuine representation is one-dimensional, and is determined by the 6-upla \([\delta(\tilde{m}_{\alpha_1}), \ldots, \delta(\tilde{m}_{\alpha_6})]\). For \(\delta(\tilde{m}_{\alpha_i}) = \pm 1\), there are \(2^6\) distinct non-genuine representations.

The group \(Z(\tilde{M})\) has one genuine repr. \(\chi_g\), given by \(\chi_g(-I) = -1\). Hence \(\tilde{M}\) has only one genuine repr. \(\delta_g\). The dimension of \(\delta_g\) is

\[
|\tilde{M}/Z(\tilde{M})|^{\frac{1}{2}} = \sqrt{2 \cdot 2^6 / 2} = 8.
\]

To compute the character of \(\delta_g\), we use the fact \(8\delta_g = \text{Ind}_{Z(\tilde{M})}^{\tilde{M}} \chi_g\).
PART 5

- Standard Notation
- Multiplicities of K-types in principal series
- Some easy examples (linear case)
- Non-linear case (what we know...)

- An inductive algorithm to compute multiplicities
- Generalization
An inductive algorithm to compute multiplicities

INPUT

- tensor product of W-orbits of \tilde{M}-types
- restriction to \tilde{M} of fundamental \tilde{K}-types

OUTPUT

- restriction to \tilde{M} of every other \tilde{K}-type
“essentially” recovered from \bigotimes of fine \tilde{K}-types

tensor product of W-orbits of \tilde{M}-types

restriction to \tilde{M} of fundamental \tilde{K}-types

computed by hand

multiplicities of \tilde{K}-types in principal series

restriction to \tilde{M} of every other \tilde{K}-type

A VERY COOL FACT: in order to restrict \tilde{K}-types to \tilde{M}, we need very little information about the actual repr.s of \tilde{M}
Computing the restriction of a \tilde{K}-type μ to \tilde{M}

(by induction on level and lexicographical order)

- μ embeds in a tensor product of fundamental representations
- we can write $\mu = \mu' + \omega$, with ω fundamental and μ' lower in the induction

\[\mu' \otimes \omega = \mu + (\text{lower terms}) \]

\[(\star) \]

- The restriction of μ' and ω to \tilde{M} are known (by induction)
- The restriction of $\mu' \otimes \omega$ to \tilde{M} is computed using the table of tensor product of W-orbits of \tilde{M}-types (base of induction)
- Equation (\star) gives $\text{Res}_{\tilde{M}} \mu$ (by comparison)
An example

Let $\tilde{G} = \tilde{F}_4$, $\tilde{K} = SP(1) \times SP(3)$ and $\mu = (0|200)$.

$$(0|200) = (0|100) + (0|100) \quad \Rightarrow \quad \mu \mapsto \mu' \otimes \omega$$

μ lower in induction
μ' fundamental

Restriction to \tilde{M} gives:

$$(0|100) \otimes (0|100) = (0|200) \oplus (0|110) \oplus (0|00)$$

We know that $\bar{d}_6 \otimes \bar{d}_6 = 3\delta_0 \oplus 3\bar{d}_3 \oplus 2\bar{d}_{12}$. Hence

$$\text{Res}(0|200) = 3\bar{d}_3 \oplus \bar{d}_{12}$$

by comparison.
BASE OF INDUCTION
for double covers of exceptional groups
The two-fold cover of E_6

- $\tilde{G} = \tilde{E}_6$
- $\tilde{K} = Sp(4)$

<table>
<thead>
<tr>
<th>W-orbit of \tilde{M}-types</th>
<th>dim.</th>
<th>fine \tilde{K}-type</th>
<th>W_δ^0</th>
<th>$W(\delta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_1</td>
<td>1</td>
<td>(0)</td>
<td>$W(E_6)$</td>
<td>$W(E_6)$</td>
</tr>
<tr>
<td>δ_8</td>
<td>8</td>
<td>w_1</td>
<td>$W(E_6)$</td>
<td>$W(E_6)$</td>
</tr>
<tr>
<td>$\bar{\delta}_{27}$</td>
<td>$27 \cdot 1$</td>
<td>w_2</td>
<td>$W(D_5)$</td>
<td>$W(D_5)$</td>
</tr>
<tr>
<td>$\bar{\delta}_{36}$</td>
<td>$36 \cdot 1$</td>
<td>$2w_1$</td>
<td>$W(A_5A_1)$</td>
<td>$W(A_5A_1)$</td>
</tr>
<tr>
<td>Fundam. \tilde{K}-type</td>
<td>$#\delta_1$</td>
<td>$#\delta_8$</td>
<td>$#\tilde{\delta}_{27}$</td>
<td>$#\tilde{\delta}_{36}$</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>w_1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>w_2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>w_3</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>w_4</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>δ_8</th>
<th>$\tilde{\delta}_{27}$</th>
<th>$\tilde{\delta}_{36}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_8</td>
<td>$\delta_1 + \tilde{\delta}{27} + \tilde{\delta}{36}$</td>
<td>$27\delta_8$</td>
</tr>
<tr>
<td>$\tilde{\delta}_{27}$</td>
<td>$27\delta_8$</td>
<td>$27\delta_1 + 10\tilde{\delta}{27} + 12\tilde{\delta}{36}$</td>
</tr>
<tr>
<td>$\tilde{\delta}_{36}$</td>
<td>$36\delta_8$</td>
<td>$16\tilde{\delta}{27} + 15\tilde{\delta}{36}$</td>
</tr>
<tr>
<td>δ_1</td>
<td>$16\tilde{\delta}{27} + 15\tilde{\delta}{36}$</td>
<td>$36\delta_1 + 20\tilde{\delta}{27} + 20\tilde{\delta}{36}$</td>
</tr>
</tbody>
</table>
The two-fold cover of E_8

- $\tilde{G} = \tilde{E}_8$
- $\tilde{K} = Spin(16)$

<table>
<thead>
<tr>
<th>W-orbit of \tilde{M}-types</th>
<th>dim.</th>
<th>fine \tilde{K}-type</th>
<th>W_0^δ</th>
<th>$W(\delta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_0</td>
<td>1</td>
<td>(0)</td>
<td>$W(E_8)$</td>
<td>$W(E_8)$</td>
</tr>
<tr>
<td>δ_{16}</td>
<td>16</td>
<td>w_1</td>
<td>$W(E_8)$</td>
<td>$W(E_8)$</td>
</tr>
<tr>
<td>$\bar{\delta}_{120}$</td>
<td>120 \cdot 1</td>
<td>w_2</td>
<td>$W(E_7A_1)$</td>
<td>$W(E_7A_1)$</td>
</tr>
<tr>
<td>$\bar{\delta}_{135}$</td>
<td>135 \cdot 1</td>
<td>$2w_1$</td>
<td>$W(D_8)$</td>
<td>$W(D_8)$</td>
</tr>
<tr>
<td>non-genuine fund. \tilde{K}-type</td>
<td>$#\delta_0$</td>
<td>$#\delta_{120}$</td>
<td>$#\delta_{135}$</td>
<td>genuine fund. \tilde{K}-type</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>w_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>w_1</td>
</tr>
<tr>
<td>w_4</td>
<td>35</td>
<td>7</td>
<td>7</td>
<td>w_3</td>
</tr>
<tr>
<td>w_6</td>
<td>28</td>
<td>35</td>
<td>28</td>
<td>w_5</td>
</tr>
<tr>
<td>w_8</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>w_7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\otimes</th>
<th>δ_{16}</th>
<th>$\bar{\delta}_{120}$</th>
<th>$\bar{\delta}_{135}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_{16}</td>
<td>$\delta_0 + \bar{\delta}{120} + \bar{\delta}{135}$</td>
<td>$120\delta_{16}$</td>
<td>$135\delta_{16}$</td>
</tr>
<tr>
<td>$\bar{\delta}_{120}$</td>
<td>$120\delta_{16}$</td>
<td>$120\delta_0 + 56\bar{\delta}_{120}$</td>
<td>$63\bar{\delta}{120} + 64\bar{\delta}{135}$</td>
</tr>
<tr>
<td>$\bar{\delta}_{135}$</td>
<td>$135\delta_{16}$</td>
<td>$63\bar{\delta}{120} + 64\bar{\delta}{135}$</td>
<td>$135\delta_0 + 72\bar{\delta}_{120}$</td>
</tr>
</tbody>
</table>
The two-fold cover of F_4

- $\tilde{G} = \tilde{F}_4$
- $\tilde{K} = Sp(1) \times Sp(3)$

<table>
<thead>
<tr>
<th>W-orbit of \tilde{M}-types</th>
<th>dim.</th>
<th>fine \tilde{K}-type</th>
<th>W_δ^0</th>
<th>$W(\delta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_0</td>
<td>1</td>
<td>$(0</td>
<td>000)$</td>
<td>$W(F_4)$</td>
</tr>
<tr>
<td>δ_2</td>
<td>2</td>
<td>$(1</td>
<td>000)$</td>
<td>$W(F_4)$</td>
</tr>
<tr>
<td>$\tilde{\delta}_3$</td>
<td>$3 \cdot 1$</td>
<td>$(2</td>
<td>000)$</td>
<td>$W(C_4)$</td>
</tr>
<tr>
<td>$\tilde{\delta}_6$</td>
<td>$3 \cdot 2$</td>
<td>$(0</td>
<td>100)$</td>
<td>$W(B_4)$</td>
</tr>
<tr>
<td>$\tilde{\delta}_{12}$</td>
<td>$12 \cdot 1$</td>
<td>$(1</td>
<td>100)$</td>
<td>$W(B_3A_1)$</td>
</tr>
<tr>
<td>\non\text{-}genuine</td>
<td>#\delta_0</td>
<td>#\tilde{\delta}_3</td>
<td>#\tilde{\delta}_{12}</td>
<td>\text{genuine}</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>\tilde{K}\text{-}types</td>
<td></td>
<td></td>
<td></td>
<td>\tilde{K}\text{-}types</td>
</tr>
<tr>
<td>(0</td>
<td>000)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(0</td>
<td>110)</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\cancel{\times}</th>
<th>\delta_2</th>
<th>\tilde{\delta}_3</th>
<th>\tilde{\delta}_6</th>
<th>\tilde{\delta}_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\delta_2</td>
<td>\delta_0 + \tilde{\delta}_3</td>
<td>3\delta_2</td>
<td>\tilde{\delta}_{12}</td>
<td>4\tilde{\delta}_6</td>
</tr>
<tr>
<td>\tilde{\delta}_3</td>
<td>3\delta_2</td>
<td>3\delta_0 + 2\tilde{\delta}_3</td>
<td>3\tilde{\delta}_6</td>
<td>3\tilde{\delta}_{12}</td>
</tr>
<tr>
<td>\tilde{\delta}_6</td>
<td>\tilde{\delta}_{12}</td>
<td>3\tilde{\delta}_6</td>
<td>3\delta_0 + 3\tilde{\delta}3 + 2\tilde{\delta}{12}</td>
<td>12\delta_2 + 8\tilde{\delta}_6</td>
</tr>
<tr>
<td>\tilde{\delta}_{12}</td>
<td>4 \tilde{\delta}_6</td>
<td>3\tilde{\delta}_{12}</td>
<td>12\delta_2 + 8\tilde{\delta}_6</td>
<td>12\delta_0 + 12\tilde{\delta}3 + 8\tilde{\delta}{12}</td>
</tr>
</tbody>
</table>
The two-fold cover of E_7

- $\tilde{G} = \tilde{E}_7$
- $\tilde{K} = SU(8)$

<table>
<thead>
<tr>
<th>W-orbit of \tilde{M}-types</th>
<th>dim.</th>
<th>fine \tilde{K}-type</th>
<th>W^0_δ</th>
<th>$W(\delta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_1</td>
<td>1</td>
<td>(0)</td>
<td>$W(E_7)$</td>
<td>$W(E_7)$</td>
</tr>
<tr>
<td>δ_8</td>
<td>8</td>
<td>w_1</td>
<td>$W(E_7)$</td>
<td>$W(E_7)$</td>
</tr>
<tr>
<td>δ_8^*</td>
<td>8</td>
<td>w_7</td>
<td>$W(E_7)$</td>
<td>$W(E_7)$</td>
</tr>
<tr>
<td>$\tilde{\delta}_{28}$</td>
<td>$28 \cdot 1$</td>
<td>w_2, w_6</td>
<td>$W(E_6)$</td>
<td>$W(E_6) \rtimes \mathbb{Z}_2$</td>
</tr>
<tr>
<td>$\tilde{\delta}_{36}$</td>
<td>$36 \cdot 1$</td>
<td>$2w_1, 2w_7$</td>
<td>$W(A_7)$</td>
<td>$W(A_7) \rtimes \mathbb{Z}_2$</td>
</tr>
<tr>
<td>$\tilde{\delta}_{63}$</td>
<td>$63 \cdot 1$</td>
<td>$w_1 + w_7$</td>
<td>$W(D_6A_1)$</td>
<td>$W(D_6A_1)$</td>
</tr>
<tr>
<td>fundamental \tilde{K}-types</td>
<td>$#\delta_1$</td>
<td>$#\tilde{\delta}_{28}$</td>
<td>$#\tilde{\delta}_{36}$</td>
<td>$#\tilde{\delta}_{63}$</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>w_0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>w_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>w_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>w_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>w_4</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>w_5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>w_6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>w_7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>δ_8</td>
<td>δ^*_8</td>
<td>$\bar{\delta}_{28}$</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>δ_8</td>
<td>$\bar{\delta}{28} + \bar{\delta}{36}$</td>
<td>$\delta_1 + \bar{\delta}_{63}$</td>
<td>$28\delta^*_8$</td>
<td></td>
</tr>
<tr>
<td>δ^*_8</td>
<td>$\delta_1 + \bar{\delta}_{63}$</td>
<td>$\bar{\delta}{28} + \bar{\delta}{36}$</td>
<td>$28\delta_8$</td>
<td></td>
</tr>
<tr>
<td>$\bar{\delta}_{28}$</td>
<td>$28\delta^*_8$</td>
<td>$28\delta_8$</td>
<td>$28\delta_1 + 12\bar{\delta}_{63}$</td>
<td></td>
</tr>
<tr>
<td>$\bar{\delta}_{36}$</td>
<td>$36\delta^*_8$</td>
<td>$36\delta_8$</td>
<td>$16\bar{\delta}_{63}$</td>
<td></td>
</tr>
<tr>
<td>$\bar{\delta}_{63}$</td>
<td>$63\delta_8$</td>
<td>$63\delta^*_8$</td>
<td>$27\bar{\delta}{28} + 28\bar{\delta}{36}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$\bar{\delta}_{36}$</th>
<th>$\bar{\delta}_{63}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_8</td>
<td>$36\delta^*_8$</td>
<td>$63\delta_8$</td>
</tr>
<tr>
<td>δ^*_8</td>
<td>$36\delta_8$</td>
<td>$63\delta^*_8$</td>
</tr>
<tr>
<td>$\bar{\delta}_{28}$</td>
<td>$16\bar{\delta}_{63}$</td>
<td>$27\bar{\delta}{28} + 28\bar{\delta}{36}$</td>
</tr>
<tr>
<td>$\bar{\delta}_{36}$</td>
<td>$36\delta_1 + 20\bar{\delta}_{63}$</td>
<td>$36\bar{\delta}{28} + 35\bar{\delta}{36}$</td>
</tr>
<tr>
<td>$\bar{\delta}_{63}$</td>
<td>$36\bar{\delta}{28} + 35\bar{\delta}{36}$</td>
<td>$63\delta_1 + 62\bar{\delta}_{63}$</td>
</tr>
</tbody>
</table>
Restriction to \tilde{M} of the fundamental \tilde{K}-types

the example of \tilde{E}_6

$\tilde{G} = \tilde{E}_6$
$\tilde{K} = Sp(4)$

Fundamental \tilde{K}-types: w_1, w_2, w_3, w_4

W-orbits of \tilde{M}-types: $\delta_1, \delta_8, \delta_{27}, \text{and } \delta_{36}$

- $\text{Res}_{\tilde{M}} w_1 = \delta_8$, and $\text{Res}_{\tilde{M}} w_2 = \delta_{27}$ (fine \tilde{K}-types)
- w_3 is genuine, and has dimension 48, hence $\text{Res}(w_3) = 6\delta_8$
- $(w_4)^{\tilde{M}}$ is the reflection repr. 6p, because w_4 is the repr. of \tilde{K} on \mathfrak{p}. For dimensional reasons, $\text{Res}(w_4) = 6\delta_1 \oplus \delta_{36}$.
some examples for \tilde{E}_6

- $\delta_8 \otimes \delta_8 = \text{Res}_M[w_1 \otimes w_1] = \text{Res}_M[(0) \oplus w_2 \oplus 2w_1] = \delta_1 \oplus \delta_{27} \oplus \delta_{36}$
- $\tilde{\delta}_{36} \otimes \tilde{\delta}_{36} = \text{Res}_M[(2w_1) \otimes (2w_1)] = \text{Res}_M[(0) \oplus w_2 \oplus (2w_1)] \oplus \text{Res}_M[(2w_2) \oplus (2w_1 + w_2) \oplus (4w_1)]$

First, we compute $(2w_2)^\tilde{M}$. Because $(2w_2) \hookrightarrow (w_2 \otimes w_2)$ and

$$(w_2 \otimes w_2)^\tilde{M} = \text{Ind}_{W(\delta_{27})}^{W(E_6)} \text{Hom}_\tilde{M}(\delta_{27}, w_2) = \text{Ind}_{W(D_5)}^{W(E_6)}(5|0)$$

we can write:

$$(2w_2)^\tilde{M} = (w_2 \otimes w_2)^\tilde{M} - (w_1 + w_3)^\tilde{M} - w_4^\tilde{M} - 0^\tilde{M} = 20_p.$$
Similarly, we find \((4w_1)\widetilde{M} = 15_q\). Then

\[
\text{Res}_{\widetilde{M}}(4w_1) = 15\delta_1 \oplus b\delta_{27} \oplus c\delta_{36}.
\]

Comparing dimensions, we find that \(35 = 3b + 4c\) hence \(c = 2, 5\) or \(8\). We also notice that \(c = \dim[\text{Hom}_{\widetilde{M}}(\delta_{36}, 4w_1)]\). Because

\[
\text{Ind}_{W(A_5 A_1)}^{W(E_6)} \text{Hom}_{\widetilde{M}}(\delta_{36}, 4w_1) = (2w_1 \otimes 4w_1)\widetilde{M} \subseteq (4w_1)\widetilde{M} = 15_q
\]

the \(W(A_5 A_1)\)-representation \(\text{Hom}_{\widetilde{M}}(\delta_{36}, 4w_1)\) is a submodule of

\[
\text{Res}_{W(A_5 A_1)}^{W(E_6)}[15_q] = [(33) \otimes (11)] \oplus [(42) \otimes (2)] \oplus [(6) \otimes (2)].
\]

Hence \(c = 5\), and \(\text{Res}_{\widetilde{M}}(4w_1) = 15\delta_1 \oplus 5\delta_{27} \oplus 5\delta_{36}\).

The restrictions of \((2w_1 + w_2)\) and \((2w_2)\) are computed similarly. Then

\[
\delta_{36} \otimes \delta_{36} = 36\delta_1 \oplus 20\delta_{27} \oplus 20\delta_{36}.
\]
PART 6

- Standard Notation

- Multiplicities of K-types in principal series

- Some easy examples (linear case)

- Non-linear case (what we know...)

- An inductive algorithm to compute multiplicities

- Generalization
An inductive algorithm to compute multiplicities (revisited)

INPUT

- Tensor product of orbits of \tilde{M}-types
- Restriction to \tilde{M} of fundamental \tilde{K}-types

OUTPUT

- Dimension of $\text{Hom}_{\tilde{M}}(\delta, \mu)$

\[\forall \tilde{M}\text{-type } \delta \text{ and } \forall \tilde{K}\text{-type } \mu \]
Generalization

INPUT

- Tensor product of orbits of \tilde{M}-types
- Restriction to \tilde{M} of fundamental \tilde{K}-types
- $\text{Hom}_{\tilde{M}}(\delta, w \otimes \mu_\tau)$ for all fundamental \tilde{K}-type w and all \tilde{M}-type δ, τ

OUTPUT

- $\text{Hom}_{\tilde{M}}(\delta, \mu)$ for all \tilde{M}-type δ and all \tilde{K}-type μ
- As a $W(\delta)$-representation

Double Stabilizer $W(\delta, \tau)$
DETAILS

... coming soon...