Spherical Unitary Representations of Split Groups

November 19, 2002

Abstract

This is an expository version of the first few sections of Spherical Unitary Dual for Split Classical Groups by Dan Barbasch. See www.math.cornell.edu/~ barbasch.

1 Introduction

Let G be a split symplectic or orthogonal group over \mathbb{R} or a p-adic field. We compute the irreducible unitary spherical representations of G.

Suppose $\lambda=\left(a_{1}, \ldots, a_{n}\right)$ where $n=\operatorname{rank}(G) a_{i} \in \mathbb{C}$ for all i. Then associated to λ is a principal series representation $X(\lambda)$. This representation has a unique spherical constituent which we denote $\bar{X}(\lambda)$. This is tempered and hence unitary if $a_{i} \in i \mathbb{R}$ for all i. Unitarity for general λ reduces to the case $a_{i} \in \mathbb{R}$ for all $i[?]$. From now on we assume this is the case. Then $X(\lambda)$ has an invariant Hermitian form if and only if $-\lambda$ is conjugate to λ by the Weyl group. This is automatic if the long element of the Weyl group is equal to -1 , i.e. G is not of type D_{n} with n odd. In the latter case the condition holds if and only if $a_{i}=0$ for some i.

Let G^{\vee} be the complex dual group of G. Fix a unipotent orbit \mathcal{O}^{\vee} of G^{\vee}. According to the Arthur conjectures [?] associated to \mathcal{O}^{\vee} is (among other things) a spherical unitary representation π of G. By standard theory attached to \mathcal{O}^{\vee} is semi-simple $\operatorname{Ad}\left(G^{\vee}\right)$ orbit in the Lie algebra \mathfrak{g}^{\vee} of G^{\vee}, which in turn gives rise to element $\lambda \in \mathfrak{h}^{*}$. We write $\lambda=\lambda\left(\mathcal{O}^{\vee}\right)$. Thie spherical representation associated to \mathcal{O}^{\vee} by Arthur's conjecture is $\bar{X}(\lambda)$, i.e. we expect that $\bar{X}(\lambda)$ is unitary.

For example the principal nilpotent orbit gives $\lambda=\lambda\left(\mathcal{O}^{\vee}\right)=\rho$ and $\bar{X}(\lambda)$ is the trivial representation. On the other hand if $\mathcal{O}^{\vee}=0$ then $\lambda=\lambda\left(\mathcal{O}_{c}\right)=0$, and $X(\lambda)=\bar{X}(\lambda)$ is irreducible and unitary.

Associated to \mathcal{O}^{\vee} is the Bala-Carter [?] Levi factor M^{\vee} of G^{\vee}. If $M^{\vee}=G^{\vee}$ the orbit \mathcal{O}^{\vee} is said to be distinguished. The Levi factor M^{\vee} has the property that $\mathcal{O}^{\vee} \cap M^{\vee}$ is a distinguished nilpotent orbit \mathcal{O}_{M}^{\vee} in M^{\vee}. Furthermore the split \mathbb{F}-form M of the dual of M^{\vee} is then a Levi subgroup of G. Suppose M is a
proper subgroup of G. By the preceding discussion we expect that the spherical representation $\bar{X}_{M}\left(\mathcal{O}_{M}^{\vee}\right)$ of M_{c} is unitary.

In a bit more detail, we have

$$
M \simeq M_{0} \times G L\left(m_{1}\right) \times \cdots \times G L\left(m_{r}\right)
$$

where M_{0} is of the same type as G. The only distinguished nilpotent orbit in $G L(m)$ is the principal nilpotent, so \mathcal{O}^{\vee} is the product of a distinguished nilpotent orbit in M_{0} with the principal nilpotent orbits in each $G L$ factor.

Let us assume for the moment that for any distinguished nilpotent orbit of M_{0} the corresponding spherical representation $\bar{X}_{M_{0}}$ is unitary.

Now suppose \mathcal{O}^{\vee} is not distinguished, with corresonding Levi factor M and $\mathcal{O}_{M}^{\vee}=\mathcal{O}^{\vee} \cap M^{\vee}$. Let $\lambda=\lambda\left(\mathcal{O}^{\vee}\right)=\lambda\left(\mathcal{O}_{M}^{\vee}\right)$. By the preceding discussion we assume $\bar{X}_{M}(\lambda)$ is unitary. Then $\bar{X}(\lambda)$ is the spherical constituent of

$$
\operatorname{Ind}_{P}^{G}\left(X_{M}(\lambda) \otimes 1\right)
$$

where $\operatorname{Ind} d_{P}^{G}$ denotes unitary induction from $P=M N$ to G. In particular $\bar{X}(\lambda)$ is unitary. Henceforth we drop N from the notation and write $\operatorname{Ind}_{M}^{G}\left(X_{M}(\lambda)\right)$.

From this realization of $\bar{X}(\lambda)$ we see it may be possible to embed $\bar{X}(\lambda)$ in a continuous family of unitary representations. Let χ be a real-valued character χ of M (trivial on M_{0}), i.e. χ restricted to each $G L$ factor is a real power of $|d e t|$. We may then consider $\operatorname{Ind}_{M}^{G}\left(X_{M}(\lambda) \chi\right)$ Letting $\nu=d \chi$ we write this as

$$
\begin{equation*}
\operatorname{Ind}_{M}^{G}\left(X_{M}(\lambda+\nu)\right) \tag{1.1}
\end{equation*}
$$

and the spherical consitutent of this representation is $\bar{X}(\lambda+\nu)$. In fact the induced representation (1.1) is reasonably close to be irreducible. More precisely the multiplicities of certain K-types which determine unitarity are the same in (1.1) and $\bar{X}(\lambda+\nu)$.

Suppose $\operatorname{Ind}_{P}^{G}\left(X_{M}(\lambda)\right)$ is irreducible. It is well known that the signature of the invariant Hermitian form on $\operatorname{Ind} d_{M}^{G}\left(X_{M}(\lambda+\nu)\right)$, as ν varies, can only change sign at a point where it is reducible. We conclude that $X(\lambda+\nu)$ is unitary for all ν in some open set. This is the complementary series attached to \mathcal{O}^{\vee} and containing $\bar{X}(\lambda)$. This complementary series exists for the induced representation 1.1 (even it is not irreducible). We seek to describe this set.

If \mathcal{O}^{\vee} is the 0 -orbit then $M \simeq G L(1)^{n}$ is the split torus in G, and $\bar{X}(\nu)$ is the spherical consituent of the minimal principal series representation $\operatorname{Ind}{ }_{T}^{G}(\nu)$. The 0 -complementary series may be considered as an open subset of \mathbb{R}^{n}. We are going to reduce to this case, so we assume that we have computed this set for all classical groups.

We return to the consideration of a general nilpotent orbit \mathcal{O}^{\vee}.
Definition 1.1 Given \mathcal{O}^{\vee} we let H^{\vee} be the reductive part of the centralizer of \mathcal{O}^{\vee} in G^{\vee}. Let H be the \mathbb{F}-points of the split \mathbb{F}-form of the dual group of H^{\vee}.

Remark 1.2 The identity component of H is a product of symplectic and orthogonal groups.

Note that H is not necessarily a subgroup of G. By [?] M^{\vee} is the centralizer in G^{\vee} of a maximal torus T^{\vee} in H^{\vee} and T^{\vee} is the center of M^{\vee}. (In particular \mathcal{O}^{\vee} is distinguished if and only if H^{\vee} is finite.) Taking duals we see that the maximal split torus T of H may identified with the center of M. Consequently the character $\nu=d \chi$ of M may be identified with a minimal principal series representation $\operatorname{Ind}_{T}^{H}(\nu)$.

The key observation is that the complementary series containing $\bar{X}(\lambda)$ is determined by the 0 -complementary series of H :

Proposition 1.3 The representation $\bar{X}_{G}(\lambda+\nu)$ is unitary if and only if $\bar{X}_{H}(\nu)$ is unitary, i.e. $\bar{X}_{H}(\nu)$ is in the 0 -complementary series for H.

We now have a large family of unitary representations obtained by continuous deformation of the representations associated to a nilpotent orbit. The main theorem is that this gives the entire spherical unitary dual.

Theorem 1.4 Let $G=S p(n, \mathbb{F})$ or $S O(n, \mathbb{F})$ be a split group over a $\mathbb{F}=\mathbb{R}$ or a p-adic field.

1. Let \mathcal{O}^{\vee} be a distinguished nilpotent orbit in G^{\vee}, and let $\lambda=\lambda\left(\mathcal{O}^{\vee}\right)$. Then $\bar{X}(\lambda)$ is unitary.
2. Fix a nilpotent orbit \mathcal{O}^{\vee} and let $\lambda=\lambda\left(\mathcal{O}^{\vee}\right)$. Let $H=H\left(\mathcal{O}^{\vee}\right)$ (Definition 1.1). The complementary series $\bar{X}(\lambda+\nu)$ associated to \mathcal{O}^{\vee} is in bijection with the 0 -complementary series $\bar{X}_{H}(\nu)$ of H.
3. Suppose π is an irreducible unitary spherical representation of G. Then there is a unique nilpotent orbit \mathcal{O}^{\vee} such that $\pi \simeq \bar{X}(\lambda+\nu)$ where $\lambda=$ $\lambda\left(\mathcal{O}^{\vee}\right)$ and $\bar{X}(\lambda+\nu)$ is in the complementary series attached to \mathcal{O}^{\vee}.

By Remark 1.2 the next result completes the classification of the spherical unitary dual.

Theorem 1.5 Classification of 0 -complementary series for types B, C, D.
By the preceding discussion is an algorithm which associates to any λ a group H and a parameter ν for H such that $\bar{X}_{G}(\lambda)$ is unitary if and only if $\bar{X}_{H}(\nu)$ is unitary. We make this algorithm explicit in Section 3.

2 Data associated to a nilpotent orbit

We describe some data associated to a nilpotent orbit in a classical group. This will be applied to G^{\vee}.

Let $G=S p(n, C)$ or $S O(n, C)$. The nilpotent orbits of G are parametrized by partitions $\left(a_{1}, \ldots, a_{r}\right)$ with $a_{1} \geq \ldots a_{n} \geq 0$ and $\sum a_{i}=n$. The multiplicity of each even (respectively odd) part must be even in the case of $O(n)$ (resp. $S p(n)$). We view the partition as a Young diagram with rows of length a_{1}, \ldots, a_{r}.

The parameter h: We first give an algorithm to compute $h=h(O)$. For each row of length $a_{i}>1$ we attach the set $\left\{1,2, \ldots, \frac{a_{i}-1}{2}\right\}$ if a_{i} is odd, or $\left\{\frac{1}{2}, \frac{3}{2}, \ldots, \frac{a_{i}-1}{2}\right\}$ if a_{i} is even. Let S be the union of these sets and let h_{0} be the elements of S arranged in decreasing order. Then h is obtained by appending $0^{\prime} s$ to h_{0} so that the number of coordinates is the rank of G.

The group H: Fix a partition P. We write

$$
P=\left(a_{1}^{m_{1}}, a_{2}^{m_{2}}, \ldots, a_{r}^{m_{r}}\right)
$$

where $a^{m}=\overbrace{a, a, \ldots a}^{m}$.
For each i we let

$$
H_{i}= \begin{cases}O\left(m_{i}\right) & G=S p(n), a_{i} \text { even } \\ O\left(m_{i}\right) & G=O(n), a_{i} \text { odd } \\ S p(n) & G=S p(n), a_{i} \text { odd } \\ S p(n) & G=O(n), a_{i} \text { even }\end{cases}
$$

Then

$$
H=S\left[H_{1} \times \ldots H_{r}\right]
$$

Note that H contains a non-trivial torus if and only if $m_{i}>1$ for some i. Therefore

O is distinguished if and only if all rows have distinct length
A nilpotent is even [?] if all rows have the same parity. If a row of length a multiplicity one then a is even (resp. odd) if $G=S p(n)$ (resp. $S O(n)$). Therefore all distinguished nilpotent orbits are even.

The group M :

Let P be a partition

$$
P=\left(a_{1}^{m_{1}}, \ldots, a_{r}^{m_{r}}\right)
$$

as above, corresponding to a nilpotent orbit O of G. We make new partitions $\left(P_{0}, P_{1}\right)$ as follows. The partition P_{1} is obtained from P by replacing each odd m_{i} with $m_{i}-1$, and P_{0} has a single row of length a_{i} for each odd m_{i}. That is $P_{0} \cup P_{1}=P$, the multiplicity of each row in P_{1} is even, and the rows of P_{0} each have multiplicity one.

Now suppose P corresponds to a nilpotent orbit for G. Write

$$
\begin{aligned}
& P_{0}=\left(a_{1}, \ldots, a_{r}\right) \\
& P_{1}=\left(b_{1}^{m_{1}}, \ldots, b_{s}^{m_{s}}\right)
\end{aligned}
$$

Each m_{i} is even. Let M_{0} be a classical group of the same type as G and of rank $\sum a_{i}$. Then

$$
M=M_{0} \times G L\left(b_{1}\right)^{\frac{m_{1}}{2}} \times G L\left(b_{s}\right)^{\frac{m_{s}}{2}}
$$

Note that the orbit O_{0} in M_{0} corresponding to P_{0} is distinguished.

3 Algorithm

In this section we given an explicit algorithm realizing Theorem 1.4. That is we show how to decide whether a given representation $\bar{X}(\lambda)$ is unitary.

Fix λ. To determine if $\bar{X}(\lambda)$ is unitary we need to know if we can write $\bar{X}(\lambda)$ as in Theorem 1.4 (3). We begin with some combinatorial considerations.

Define an equivalence relation \sim on $\mathbb{R}: a \sim b$ if $a+b$ or $a-b$ is an integer. The equivalence classes are in bijection with $[0,1 / 2]$. If S is a finite subset of \mathbb{R} we write S as a disjoint union of equivalence classes $S_{0} \cup S_{1} \cup \ldots S_{r}$. Here we will require S_{0} is the set of elements of S in \mathbb{Z} or $\mathbb{Z}+\frac{1}{2}$ depending on the situation.

By a string we mean a set of real numbers of the form $\{a, a-1, \ldots, a-\ell\}$. By a balanced string we mean a string of the form $\{a, a-1, \ldots,-a\}$. Note that this implies $2 a \in \mathbb{Z}$.

Fix a set $T=\left\{b_{1}, \ldots, b_{r}\right\}$ of non-negative real numbers which are all equivalent. We seek to write T as a disjoint union of strings, where we allow each b_{i} to be replaced by $-b_{i}$. That is we write

$$
T=\left|T_{1}\right| \cup\left|T_{2}\right| \cup \cdots \cup\left|T_{s}\right|
$$

each T_{i} is a string and $\left|T_{i}\right|=\left\{|b| \mid b \in T_{i}\right\}$.
We construct these sets inductively. Assume $b_{1} \geq b_{2} \ldots b_{r} \geq 0$.
Let T_{1} be the maximal string containing b_{1} made from $b_{1}, \pm b_{2}, \ldots, \pm b_{r}$. That is $T_{1}=\left\{b_{1}, b_{1}-1, \ldots, b_{1}-\ell\right\}$ where ℓ is maximal so that $b_{1}, \pm b_{2}, \cdots \pm b_{1}-\ell \in T$. Write $T=T_{1} \cup\left(T-T_{1}\right)$. Apply the same procedure to $T-T_{1}$. Proceeding in this way we obtain sets T_{i} as stated.

We say T is the union of the strings T_{i}. (This is a slight abuse of notation: in fact $T=\cup\left|T_{i}\right|$.)

If each $b_{i} \in \frac{1}{2} \mathbb{Z}$ we may further require that each string T_{i} is balanced. We can not necessarily write T as a union of balanced strings. However there is a unique maximal subset which can be so written, and we have

$$
T=T^{\prime} \cup\left|T_{1}\right| \cup \cdots \cup\left|T_{r}\right|
$$

where T_{1}, \ldots, T_{r} are balanced and T^{\prime} contains no balanced strings.
For example if $T=\{3,2,2,2,1,1,1,0,0\}$ then $T_{1}=\{3,2,1,0,-1,-2\}, T_{2}=$ $\{2,1,0,-1,-2\}$ and $T_{3}=\{0\}$. If we require the strings to be balanced we have $T_{0}=\{3,2,1,0\}$ and $T_{1}=\{2,1,0,-1,-2\}$.

We return to our set S, and first consider the set S_{0}. We write $S_{0}=S_{0}^{\prime} \cup$ $S_{0,1} \cdots \cup S_{0, s}$ as a union of a set of maximal balanced strings as above, where S_{0}^{\prime} contains no balanced strings. Let $X=\left\{\#\left(S_{0,1}\right), \#\left(S_{0,1}\right), \ldots, \#\left(S_{0, s}\right), \#\left(S_{0, s}\right)\right\}$ (each term counted twice).

Now write each set $S_{0}^{\prime}, S_{1}, \ldots, S_{r}$ as a disjoint union of strings. For each string T which arises append $\#(T)$ to X.

Then X is a set of positive integers. We write these in decreasing order and consider X as a partition.

Now fix G and let $\lambda=\left(a_{1}, \ldots, a_{n}\right)$ with $a_{i} \in \mathbb{R}$. If $G=S O(2 n)$ with n odd assume $a_{i}=0$ for some i, i.e. λ is W-conjugate to $-\lambda$. After conjugating by the Weyl group we may assume $a_{1} \geq \ldots a_{n} \geq 0$. If $G=S O(2 n)$ and $a_{i} \neq 0$ for all i we may also need to apply an outer automorphism of G to make $a_{n}>0$; this is allowed since outer automorphisms preserve unitarity.

Let $S=\left\{a_{1}, \ldots, a_{n}\right\}$. Write $S=S_{0} \cup S_{1} \cup \cdots \cup S_{r}$ as above, where

$$
S_{0}= \begin{cases}\left\{a_{i} \in S \mid a_{i} \in \mathbb{Z}\right\} & G=S p(n) \text { or } S O(2 n) \\ \left\{a_{i} \in S \left\lvert\, a_{i} \in \mathbb{Z}+\frac{1}{2}\right.\right\} & G=S O(2 n+1)\end{cases}
$$

Apply the above procedure to S. We obtain a partion X which we denote $X(\lambda)$.

Proposition 3.1 Fix λ.

1. The partion X corresponds to a nilpotent orbit, denoted $\mathcal{O}^{\vee}(\lambda)$, of G^{\vee}.
2. The $\operatorname{map} \lambda \rightarrow \mathcal{O}^{\vee}(\lambda)$ is a left inverse to the map $\mathcal{O}^{\vee} \rightarrow \lambda\left(\mathcal{O}^{\vee}\right): \mathcal{O}^{\vee}\left(\lambda\left(\mathcal{O}^{\vee}\right)\right)=$ \mathcal{O}^{\vee} 。
3. Let $h=\lambda\left(\mathcal{O}^{\vee}(\lambda)\right)$ and $M=M\left(\mathcal{O}^{\vee}(\lambda)\right)$. Then $\lambda=h+\nu$ where ν is the differential of the character of the center of M.
4. Let $H=H\left(\mathcal{O}^{\vee}(\lambda)\right)$. Then $\bar{X}(\lambda)$ is unitary if and only if ν is in the 0 -complementary series of H.
