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Abstract

This is an expository version of the first few sections of Spherical Uni-

tary Dual for Split Classical Groups by Dan Barbasch. See
www.math.cornell.edu/˜barbasch.

1 Introduction

Let G be a split symplectic or orthogonal group over R or a p-adic field. We
compute the irreducible unitary spherical representations of G.

Suppose λ = (a1, . . . , an) where n = rank(G) ai ∈ C for all i. Then asso-
ciated to λ is a principal series representation X(λ). This representation has
a unique spherical constituent which we denote X(λ). This is tempered and
hence unitary if ai ∈ iR for all i. Unitarity for general λ reduces to the case
ai ∈ R for all i [?]. From now on we assume this is the case. Then X(λ) has an
invariant Hermitian form if and only if −λ is conjugate to λ by the Weyl group.
This is automatic if the long element of the Weyl group is equal to −1, i.e. G
is not of type Dn with n odd. In the latter case the condition holds if and only
if ai = 0 for some i.

Let G∨ be the complex dual group of G. Fix a unipotent orbit O∨ of G∨.
According to the Arthur conjectures [?] associated toO∨ is (among other things)
a spherical unitary representation π of G. By standard theory attached to O∨

is semi-simple Ad(G∨) orbit in the Lie algebra g∨ of G∨, which in turn gives
rise to element λ ∈ h∗. We write λ = λ(O∨). Thie spherical representation
associated to O∨ by Arthur’s conjecture is X(λ), i.e. we expect that X(λ) is
unitary.

For example the principal nilpotent orbit gives λ = λ(O∨) = ρ and X(λ) is
the trivial representation. On the other hand if O∨ = 0 then λ = λ(Oc) = 0,
and X(λ) = X(λ) is irreducible and unitary.

Associated to O∨ is the Bala–Carter [?] Levi factorM∨ of G∨. IfM∨ = G∨

the orbit O∨ is said to be distinguished. The Levi factor M∨ has the property
that O∨ ∩M∨ is a distinguished nilpotent orbit O∨

M in M∨. Furthermore the
split F–formM of the dual ofM∨ is then a Levi subgroup of G. SupposeM is a
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proper subgroup of G. By the preceding discussion we expect that the spherical
representation XM (O∨

M ) of Mc is unitary.
In a bit more detail, we have

M 'M0 ×GL(m1)× · · · ×GL(mr)

where M0 is of the same type as G. The only distinguished nilpotent orbit
in GL(m) is the principal nilpotent, so O∨ is the product of a distinguished
nilpotent orbit in M0 with the principal nilpotent orbits in each GL factor.

Let us assume for the moment that for any distinguished nilpotent orbit of
M0 the corresponding spherical representation XM0

is unitary.
Now suppose O∨ is not distinguished, with corresonding Levi factor M and

O∨
M = O∨ ∩M∨. Let λ = λ(O∨) = λ(O∨

M ). By the preceding discussion we
assume XM (λ) is unitary. Then X(λ) is the spherical constituent of

IndG
P (XM (λ)⊗ 1)

where IndG
P denotes unitary induction from P =MN to G. In particular X(λ)

is unitary. Henceforth we drop N from the notation and write IndG
M (XM (λ)).

From this realization of X(λ) we see it may be possible to embed X(λ) in a
continuous family of unitary representations. Let χ be a real-valued character
χ of M (trivial on M0), i.e. χ restricted to each GL factor is a real power of
|det|. We may then consider IndG

M (XM (λ)χ) Letting ν = dχ we write this as

(1.1) IndG
M (XM (λ+ ν))

and the spherical consitutent of this representation is X(λ + ν). In fact the
induced representation (1.1) is reasonably close to be irreducible. More precisely
the multiplicities of certain K–types which determine unitarity are the same in
(1.1) and X(λ+ ν).

Suppose IndG
P (XM (λ)) is irreducible. It is well known that the signature

of the invariant Hermitian form on IndG
M (XM (λ + ν)), as ν varies, can only

change sign at a point where it is reducible. We conclude that X(λ + ν) is
unitary for all ν in some open set. This is the complementary series attached
to O∨ and containing X(λ). This complementary series exists for the induced
representation 1.1 (even it is not irreducible). We seek to describe this set.

If O∨ is the 0–orbit then M ' GL(1)n is the split torus in G, and X(ν) is
the spherical consituent of the minimal principal series representation IndG

T (ν).
The 0–complementary series may be considered as an open subset of Rn. We
are going to reduce to this case, so we assume that we have computed this set
for all classical groups.

We return to the consideration of a general nilpotent orbit O∨.

Definition 1.1 Given O∨ we let H∨ be the reductive part of the centralizer of
O∨ in G∨. Let H be the F–points of the split F–form of the dual group of H∨.

Remark 1.2 The identity component of H is a product of symplectic and or-
thogonal groups.
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Note that H is not necessarily a subgroup of G. By [?] M∨ is the centralizer
in G∨ of a maximal torus T∨ in H∨ and T∨ is the center of M∨. (In particular
O∨ is distinguished if and only if H∨ is finite.) Taking duals we see that the
maximal split torus T of H may identified with the center of M . Consequently
the character ν = dχ of M may be identified with a minimal principal series
representation IndH

T (ν).
The key observation is that the complementary series containing X(λ) is

determined by the 0–complementary series of H:

Proposition 1.3 The representation XG(λ+ν) is unitary if and only if XH(ν)
is unitary, i.e. XH(ν) is in the 0–complementary series for H.

We now have a large family of unitary representations obtained by contin-
uous deformation of the representations associated to a nilpotent orbit. The
main theorem is that this gives the entire spherical unitary dual.

Theorem 1.4 Let G = Sp(n,F) or SO(n,F) be a split group over a F = R or
a p–adic field.

1. Let O∨ be a distinguished nilpotent orbit in G∨, and let λ = λ(O∨). Then
X(λ) is unitary.

2. Fix a nilpotent orbit O∨ and let λ = λ(O∨). Let H = H(O∨) (Definition
1.1). The complementary series X(λ+ ν) associated to O∨ is in bijection
with the 0–complementary series XH(ν) of H.

3. Suppose π is an irreducible unitary spherical representation of G. Then
there is a unique nilpotent orbit O∨ such that π ' X(λ + ν) where λ =
λ(O∨) and X(λ+ ν) is in the complementary series attached to O∨.

By Remark 1.2 the next result completes the classification of the spherical
unitary dual.

Theorem 1.5 Classification of 0-complementary series for types B,C,D.

By the preceding discussion is an algorithm which associates to any λ a
group H and a parameter ν for H such that XG(λ) is unitary if and only if
XH(ν) is unitary. We make this algorithm explicit in Section 3.

2 Data associated to a nilpotent orbit

We describe some data associated to a nilpotent orbit in a classical group. This
will be applied to G∨.

Let G = Sp(n,C) or SO(n,C). The nilpotent orbits of G are parametrized
by partitions (a1, . . . , ar) with a1 ≥ . . . an ≥ 0 and

∑
ai = n. The multiplicity of

each even (respectively odd) part must be even in the case of O(n) (resp. Sp(n)).
We view the partition as a Young diagram with rows of length a1, . . . , ar.
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The parameter h: We first give an algorithm to compute h = h(O). For
each row of length ai > 1 we attach the set {1, 2, . . . , ai−1

2
} if ai is odd, or

{ 1
2
, 3

2
, . . . , ai−1

2
} if ai is even. Let S be the union of these sets and let h0 be the

elements of S arranged in decreasing order. Then h is obtained by appending
0′s to h0 so that the number of coordinates is the rank of G.

The group H: Fix a partition P . We write

P = (am1

1 , am2

2 , . . . , amr

r )

where am =

m
︷ ︸︸ ︷
a, a, . . . a.

For each i we let

Hi =







O(mi) G = Sp(n), ai even

O(mi) G = O(n), ai odd

Sp(n) G = Sp(n), ai odd

Sp(n) G = O(n), ai even

Then
H = S[H1 × . . . Hr]

Note that H contains a non–trivial torus if and only if mi > 1 for some i.
Therefore

O is distinguished if and only if all rows have distinct length

A nilpotent is even [?] if all rows have the same parity. If a row of length
a multiplicity one then a is even (resp. odd) if G = Sp(n) (resp. SO(n)).
Therefore all distinguished nilpotent orbits are even.

The group M:

Let P be a partition
P = (am1

1 , . . . , amr

r )

as above, corresponding to a nilpotent orbit O of G. We make new partitions
(P0, P1) as follows. The partition P1 is obtained from P by replacing each odd
mi with mi − 1, and P0 has a single row of length ai for each odd mi. That is
P0 ∪P1 = P , the multiplicity of each row in P1 is even, and the rows of P0 each
have multiplicity one.

Now suppose P corresponds to a nilpotent orbit for G. Write

P0 = (a1, . . . , ar)

P1 = (bm1

1 , . . . , bms

s )

Each mi is even. Let M0 be a classical group of the same type as G and of rank
∑
ai. Then

M =M0 ×GL(b1)
m1
2 ×GL(bs)

ms

2 .

Note that the orbit O0 in M0 corresponding to P0 is distinguished.
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3 Algorithm

In this section we given an explicit algorithm realizing Theorem 1.4. That is we
show how to decide whether a given representation X(λ) is unitary.

Fix λ. To determine if X(λ) is unitary we need to know if we can write
X(λ) as in Theorem 1.4 (3). We begin with some combinatorial considerations.

Define an equivalence relation ∼ on R: a ∼ b if a+ b or a− b is an integer.
The equivalence classes are in bijection with [0, 1/2]. If S is a finite subset of
R we write S as a disjoint union of equivalence classes S0 ∪ S1 ∪ . . . Sr. Here
we will require S0 is the set of elements of S in Z or Z + 1

2
depending on the

situation.
By a string we mean a set of real numbers of the form {a, a− 1, . . . , a− `}.

By a balanced string we mean a string of the form {a, a− 1, . . . ,−a}. Note that
this implies 2a ∈ Z.

Fix a set T = {b1, . . . , br} of non–negative real numbers which are all equiv-
alent. We seek to write T as a disjoint union of strings, where we allow each bi

to be replaced by −bi. That is we write

T = |T1| ∪ |T2| ∪ · · · ∪ |Ts|

each Ti is a string and |Ti| = {|b| | b ∈ Ti}.
We construct these sets inductively. Assume b1 ≥ b2 . . . br ≥ 0.
Let T1 be the maximal string containing b1 made from b1,±b2, . . . ,±br. That

is T1 = {b1, b1−1, . . . , b1−`} where ` is maximal so that b1,±b2, · · ·±b1−` ∈ T .
Write T = T1 ∪ (T − T1). Apply the same procedure to T − T1. Proceeding in
this way we obtain sets Ti as stated.

We say T is the union of the strings Ti. (This is a slight abuse of notation:
in fact T = ∪|Ti|.)

If each bi ∈
1
2
Z we may further require that each string Ti is balanced. We

can not necessarily write T as a union of balanced strings. However there is a
unique maximal subset which can be so written, and we have

T = T ′ ∪ |T1| ∪ · · · ∪ |Tr|

where T1, . . . , Tr are balanced and T ′ contains no balanced strings.
For example if T = {3, 2, 2, 2, 1, 1, 1, 0, 0} then T1 = {3, 2, 1, 0,−1,−2}, T2 =

{2, 1, 0,−1,−2} and T3 = {0}. If we require the strings to be balanced we have
T0 = {3, 2, 1, 0} and T1 = {2, 1, 0,−1,−2}.

We return to our set S, and first consider the set S0. We write S0 = S′
0 ∪

S0,1 · · ·∪S0,s as a union of a set of maximal balanced strings as above, where S ′
0

contains no balanced strings. Let X = {#(S0,1),#(S0,1), . . . ,#(S0,s),#(S0,s)}
(each term counted twice).

Now write each set S′
0, S1, . . . , Sr as a disjoint union of strings. For each

string T which arises append #(T ) to X.
Then X is a set of positive integers. We write these in decreasing order and

consider X as a partition.
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Now fix G and let λ = (a1, . . . , an) with ai ∈ R. If G = SO(2n) with n odd
assume ai = 0 for some i, i.e. λ is W–conjugate to −λ. After conjugating by
the Weyl group we may assume a1 ≥ . . . an ≥ 0. If G = SO(2n) and ai 6= 0 for
all i we may also need to apply an outer automorphism of G to make an > 0;
this is allowed since outer automorphisms preserve unitarity.

Let S = {a1, . . . , an}. Write S = S0 ∪ S1 ∪ · · · ∪ Sr as above, where

S0 =

{

{ai ∈ S | ai ∈ Z} G = Sp(n) or SO(2n)

{ai ∈ S | ai ∈ Z + 1
2
} G = SO(2n+ 1)

Apply the above procedure to S. We obtain a partion X which we denote
X(λ).

Proposition 3.1 Fix λ.

1. The partion X corresponds to a nilpotent orbit, denoted O∨(λ), of G∨.

2. The map λ→ O∨(λ) is a left inverse to the map O∨ → λ(O∨): O∨(λ(O∨)) =
O∨.

3. Let h = λ(O∨(λ)) and M = M(O∨(λ)). Then λ = h + ν where ν is the
differential of the character of the center of M .

4. Let H = H(O∨(λ)). Then X(λ) is unitary if and only if ν is in the
0–complementary series of H.
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