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1. INTRODUCTION

This paper gives a classification of the spherical dual of the split groups
Sp(n) and So(n) over the real and p-adic field. Most of the results were
known earlier from [B1], [B2], [B3] and [BM3]. As is explained in these
references, in the p-adic case the classification of the spherical unitary dual
is equivalent to the classification of the unitary generic Iwahori-spherical
modules. The new result is the proof of necessary conditions for unitarity
in the real case. Following a suggestion of D. Vogan, I find a set of K-
types which I call relevant which detect the nonunitarity. They have the
property that they are in 1-1 correspondence with certain irreducible Weyl
group representations so that the intertwining operators are the same in the
real and p-adic case. Thus the same proof applies in both cases. Since the
answer is independent of the field, this establishes a form of the Lefschetz
principle.

Let GG be a split symplectic or orthogonal group over a local field F which
is either R or a p-adic field. In general, for a group H, we will denote by
b its Lie algebra. Fix a maximal compact subgroup K. In the real case,
there is only one conjugacy class. In the p-adic case, F D R D P, where R
is the ring of integers and P the maximal prime ideal. We fix K = G(R).
Fix also a rational Borel subgroup B = AN. Then G = KB, and denote
by M := K N B. A representation (7, V) (admissible) is called spherical if
VK £ (0). The classification of irreducible admissible spherical modules is
well known. For every irreducible spherical 7, there is a character x € A such
that x|ankx = triv, and 7 is the unique spherical subquotient of I ndg [x®1].
We will call a character y whose restriction to AN K is trivial, unramified.
Since G is split, A = (F*)™ where n is the rank. Thus an unramified
character is of the form

x(a,...,an) = lar|™ ... |an|"™, v; € C/[(2im/ log q)Z], (1.0.1)

where ¢ is the order of R/P. Thus (essentially) each unramified charac-

ter is determined by an element in X*(A) ®z C. We call this element x as

well. Write X () for the induced module (principal series) and L(x) for the

irreducible spherical subquotient. Two such modules L(x) and L(x') are

equivalent if and only if there is an element in the Weyl group W such that
1
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wyx = X' An L(x) is hermitian if and only if there is w such that wxy = —.
The paper deals exclusively with what is called in [BM] real infinitesimal
character. In the real case it is well known that any representation is unitar-
ily induced irreducible from a representation with real infinitesimal character
on a proper Levi component. In the p-adic case, the results in [BM2] show
that the problem of classifying the unitary dual reduces to determining the
unitary dual with real infinitesimal character of a Hecke algebra. This Hecke
algebra, is not necessarily one for a Levi component of the group. This is
why we assume that x € a*, the (real) dual of the Lie algebra a.

Let G be the (complex) dual group, and let A be the torus dual to A.
Then we can interpret y as an element of d, or more generally a conjugacy
class of a real semisimple element of §. We attach to each x a nilpotent orbit
satisfying the following properties. Fix a Lie triple {¢, h,f } corresponding
to O such that & € a. Then O is such that

(1) there exists w € W such that wy = %iz + v with v € 3(&, h, f),

(2) if x satisfies property (1) for any other @', then O’ C 0.
The results in [BM] guarantee that for any x there is a unique O(x) satisfying
(1) and (2) above. Here is another characterization of the orbit O. Let

gi:={z€g: rl=2}  Go={red: [2]=0}

Then gp has an open dense orbit in g;. The corresponding nilpotent orbit
in gis O.

The pair (O, v) has further nice properties. For example if v = 0, then
the representation L() is one of the parameters that the Arthur conjectures
predicts to play a role in the residual spectrum. In particular, L(x) should
be unitary. In the p-adic case, its Iwahori-Matsumoto dual is tempered, and
therefore unitary ([BM]). In the real case, a proof of its unitarity is given
in [B3], and in section 9 of this paper.

The centralizer 3(&,k, f) is a product of symplectic and orthogonal Lie
algebras. We will often abbreviate it as 3(0). The orbit O is called distin-
guished if 3(O) does not contain a nontrivial torus; equivalently, the orbit
does not meet any proper Levi component. Assume that O is not distin-
guished. Let i be the centralizer of a Cartan subalgebra in 3(0). This is the
Levi component of a parabolic subalgebra. Let M C G be the Levi whose
Lie algebra m has m as its dual. The parameter y gives rise to a spherical
irreducible representation Lys(x) on M as well as a L(x). Then L(y) is the
unique spherical subquotient of

Ine(x) == Ind$[Lar(x)]- (1.0.2)

In the p-adic case (e.g. [BM]) there are precise conditions for when Ip/(x) =
L(x). In the real case the equality does not hold, but we show that it does
for the mulitplicities of the relevant K-types (section 4.2).



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 3

We will use the data (O, v) to parametrize the unitary dual. Fix an O. A
unitary representation L(x) will be called a complementary series attached
to O, if the data associated to x is @. To describe it, we need to give the
set of v such that L(x) with x = 4h + v is unitary. Viewed as an element
of 3(0), the element v gives rise to a spherical parameter ((0), ) where (0)
denotes the trivial nilpotent orbit. The main result in section 3.2 says that
the v giving rise to the complementary series for O coincide with the ones
giving rise to the complementary series for (0) on 3(O). This is suggestive
of Langlands functoriality.

It is natural to conjecture that such a result will hold for all split groups.
Recent work of D. Ciubotaru for Fy, and by D. Ciubotaru and myself for
the other exceptional cases, show that there are exceptions.

I give a more detailed outline of the paper. Section 2 reviews notation
from earlier papers. Section 3 gives a statement of the main results. The
unitarity of the unipotent representations is dealt with in section 8. For the
p-adic case I simply cite [BM3]. The real case (sketched in [B2]) is redone
in section 9.5. The proofs are simpler than the original ones because I take
advantage of the fact that wave front sets, asymptotic supports and associ-
ated varieties “coincide” due to [SV]. Section 10.1 proves an irreducibility
result which is clear in the p-adic case from the work of Kazhdan-Lusztig.
This is needed for determining the complementary series (condition (C3) in
section 3.1).

Sections 4 and 5 deal with the nonunitarity. The decomposition y = %ﬁ—l—y
is introduced in section 3. It is more common to parametrize the y by
representatives in @ which are dominant with respect to some positive root
system. Tt is quite messy to determine the data (O,v) from a dominant
parameter, because of the nature of the nilpotent orbits and the Weyl group.
Sections 2.3 and 2.4 give a combinatorial description of (O, ) starting from
a dominant .

In the classical cases, the orbit O is given in terms of partitions. To such
a partition we associate a Levi component

m:= g() X gl(k}l) X e X gl(k)r)

of a parabolic subalgebra. The intersection of @ with th is an orbit of the
form
Oo x (k1) %« x (kr)

where Oy is an even nilpotent and (k;) is the principal nilpotent orbit on
gl(k;). Then x gives rise to irreducible spherical modules Ljs(x), L(x) and
Ins(x) as in (1.0.2). The module L(x) is the spherical subquotient of Ins(x),
but the two are not equal. However the multiplicities of the relevant K-types
are the same. These are representations of the Weyl group in the p-adic case,
representations of the maximal compact subgroup in the real case. Their
definition is in section 4.2; they are a small finite set of representations
which provide necessary conditions for unitarity which are also sufficient.
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The relationship between the real and p-adic case is investigated in section
4, in particular the issue is addressed of how the relevant K-types allow us
to deal with the p-adic case only.

The determination of the nonunitary parameters proceeds by induction
on the rank of g and by the inclusion relations of the closure of the orbit
O. Section 5 completes the induction step; it shows that conditions (B) in
section 3.1 is necessary. The last part of the induction step is actually done
in section 3.1.

I would like to thank David Vogan for generously sharing his ideas about
the relation between K-types, Weyl group representations and signatures.
They were the catalyst for this paper.

This research was supported by NSF grants DMS-9706758 and DMS-
0070561.

2. DESCRIPTION OF THE SPHERICAL PARAMETERS

2.1. Explicit Langlands parameters. We consider spherical irreducible
representations of the split connected classical groups of rank n of type
B, C, D, precisely, G = So(2n + 1), G = Sp(2n) and G = So(2n). For
spherical representations of split groups, the infinitesimal character deter-
mines the Langlands parameter uniquely, so we use the terms interchange-
ably. As mentioned in the introduction, the infinitesimal character is as-
sumed real ([BM2]) throughout the paper. In the case of classical groups
it can be represented by a vector of size the rank of the group. Two such
vectors represent the same infinitesimal charater if they are conjugate via
the Weyl group which acts by permutations and sign changes for type B, C
and by permutations and an even number of sign changes in type D. For
a given infinitesimal character x, let L(x) be the corresponding irreducible
module.

For any nilpotent orbit @ we attach a parameter X as follows. Let
{&,h, f} be representatives for the Lie triple associated to a nilpotent orbit
O. Then X = %71

To each x we will attach a nilpotent orbit @ C §(n) and a parabolic
subgroup with Levi component M(x) := Go(ng) x GL(k1) X - -+ X GL(k,).
In addition we will attach to x an even nilpotent orbit @y C §o(m) and
spherical characters xo := X, and x; on GL(k;) such that L(x) is the
spherical subquotient of

I”df/[(x) [L(x0) ® Xil- (2.1.1)

We omit the unipotent radical of P from the notation since it is not so useful
for our purpuses.
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The induced module and the irreducible spherical quotient are very close
to being equal. The multiplicities of certain relevant K-types defined in
section 4 are the same for L(x) and the induced module (2.1.1).

2.2, We introduce the following notation (a variant of the one used by
Zelevinski [ZE]).
Definition. A string is a sequence

(a,a+1,...,b—1,b)

of numbers increasing by 1 from a to b. A set of strings is called nested if

the entries of any two such strings, say (ai,...,b1) and (ag,...,bs), differ
by integers and either

a1 <ag <by <by or az < ay < by < by,
or else

bi+1<aq or bo+1<a. O

Each string represents a 1-dimensional spherical representation of a GL(n;)
with n; = b; —a; + 1. A set of strings represents an induced module from the
corresponding representation ®yx; on the Levi component M = [[ GL(n;).
If the strings are nested, there is no way of combining the entries of any
two such strings to form a strictly longer one. This property has to do with
irreducibility; the induced module to GL(n1 + ...) is irreducible and the
resulting module is independent of the order of the strings or equivalently
the factors GL(n;).

On the other hand, consider a vector of size n interpreted as an infini-
tesimal character x of some GL(n). Then there is only one way to make a
nested set of strings. Separate the entries into subsets A1, ..., Ak so that the
entries in each A; differ by integers, but they do not for entries in A4;, A;
for i # j. Order the entries in A; in increasing order. Then extract the
longest sequence starting with the smallest element in A; that can form a
string. Continue to extract sequences from the remainder until there are no
elements left. Apply the procedure to the other A;.

2.3. Nilpotent orbits. In this section we attach a set of parameters to
each nilpotent orbit O. Let &, h, f be a Lie triple so that & € O, and let 3(O)

be its centralizer. The parameters x attached to O are of the form
1. N
X = Eh + v, v € 3(0), semisimple. (2.3.1)
The parameters x satisfy the condition that if

1. g
X = Eh' +/, V' €3(0'), semisimple, (2.3.2)

then @' C O. By [BM], given x, then O exists and is unique.
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Type B. The orbit O C sp(2n,C), so it is parametrized by a partition
(e 1,2y ey 2yeesgsee s yens). (2.3.3)
——— —— ——

T1 T2 7']‘

with 79;_1 even. We write %h in the usual coordinates as

0,...,0,1/2,...,1/2,...,5, 00y d,y..2) (2.3.4)
N—_—— ——— S——
S0 51/2 Sj
where
Sp — (Z T2i—1)/27 Sk,1/2 = Z’I‘Qi, Sk — ZTQi—la k) Z 1. (2.3.5)
1>k >k

If one of the 7; > 1, then the nilpotent orbit O meets a Levi component
g(n — 1) x gl(i) and the intersection is an orbit O(n — i) x (%), where ()
denotes the principal nilpotent orbit in gl(i). We can extract the string

(—%, ey %), and rewrite the parameter (2.3.4) as
p — 1 p — 1
(0,0 0,1/2, 0 1)20 oGm0, (2.3.6)
—_— — ——— 2 2
50 8172 5
We get
o — so—1 if1iis odd,
0 S0 if i is even,
(2.3.7)
, sj—2 ifj<(i—1)/2,i=j—1(mod 2),
S, =
J sj otherwise.
Rewrite the partition as (2zy, . .., 2%Zom, a1,a1,- .. ag, ax) with z; < z; 1 and

possibly o = 0 to make the number of z; odd. A general parameter x
attached to O can be rewritten as

(1/2,...,1/2,...,29m — 1/2;...;—
e ——

m

& +l/z',...,az2

+vi;...). (2.3.8)

Condition (2) in the introduction, which says that x cannot be written as
%h’ + v for any larger nilpotent (', translates into the following:

(1) the strings with % +v; — a’T_l — vj € 7 are nested.

(2) the strings with %! 4+ v; — 1/2 € Z satisfy the additional condition
that either zo,, +1/2 < —aiQ_I + v; or there is j such that

a; — a; — 1

$j+1/2<— +v; < —l—l/i<.’L‘j+1—I—1/2. (2.3.9)

We lump the strings (— “1;1, el ‘”T_l) for a; even together with the param-

eter coming from the z; with z; < z;41, and rewrite x in the form (2.3.8).
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The first part, denoted o, is as in (2.3.4), and corresponds to an even nilpo-
tent orbit Oy C m(ng) with partition (2zy,..., 2z, ) satisfying z; < z;11,
and will be called unipotent. We will rewrite the remaining strings as

1
Xi = (fitvi....Fi+v)  fi i=5(Z), 0<wvi<1/2  (23.10)

This presentation of the strings is unique except when v; = 1/2. The reason
is as follows. Any string can be written as

(f+v,...,F+v) (2.3.11)

with f,FF =1/2(Z)and 0 < v < 1. If v > 1/2, then replace it by v =1 — ¥
and reverse the signs and order to get

(=F —1+47,...,—f —14D), (2.3.12)

which is of the form (2.3.10). In case v; = 1/2, we can represent each string
as either (f+1/2,...,F+1/2)or (-F—-1+1/2,...,—f—1+41/2). We choose
the expression with the leftmost number being larger in absolute value.

The setup attaches to each parameter a Levi component th := g(ng) X
gl(n1)x---xgl(ng) such that L(y) is the spherical subquotient of the induced
module

Ind§i[L(x0) ® x1® -+ ® x#] (2.3.13)

Type C. The orbit O C so(2n+1,C), so it is parametrized by a partition
(Lo 1,2, 00,2, Gy et ) (2.3.14)
———— ———

T1 T2 7']‘

with ro;41 even. We write %h is in the usual coordinates as

0,...,0,1/2,...,1/2,..., 5,00y d,...) (2.3.15)
S —— S——
S0 S1/2 Sj
where
S0 = (Z T9i—1 — 1)/2, Sk_1/2 = ngi, S = ngi_l, k > 1. (2.3.16)
>k 1>k

If one of the r; > 1, then the nilpotent orbit O meets a Levi component
§(n—1) xgl(i) and the intersection is an orbit O(n—1) x (i), where (i) denotes

. . . . . -1 -1
the prlnC{pal nilpotent orbit in g/(i). We can extract a string (—5=, ..., 5),
and rewrite the parameter (2.3.15)
1—1 1—1
Oyer o 0,1/2 e 12 o G — . 2.3.17
( o122 @)
£ s s}

1/2
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We get as in (2.3.7),

) {30 —1 ifiisodd,

S0 if i is even,

v {sj—2 it j < (i—1)/2,i=j — 1(mod 2),
L=

sj otherwise.
Rewrite the partition as (2zo + 1,...,2z9m + 1,a1,a1,...ag,ar) with z; <
Zi+1- A general parameter y attached to O can be rewritten as
a; —1 a; —1
0,...,0,...,%om;...; —— F Uy ——— ). (2.3.18)
—— 2 2

m

Condition (2) in the introduction, which says that x cannot be written as
%h + v for a larger nilpotent ', translates into the following:

(1) the strings with % +1; — %Tfl — vj € Z are nested,

(2) the strings with %L1 4+ 1; € Z satisfy the additional condition that

either z9, +1 < —‘”2—_1 + v; or there is j such that

ai—1+yi<ai—1

T +1<— +v < Tj+1 + 1. (2.3.19)

We lump the strings (— ‘”2_1, el %) with a; odd together with the param-
eter coming from the z; with z; < z;;1, and rewrite x in the form (2.3.18).
The first part, denoted xp is as in (2.3.16), and corresponds to an even nilpo-
tent orbit Oy C (ng) with partition (2z¢ + 1,...,2z9,) with z; < 24,1,
and will be called unipotent.

We will rewrite the remaining strings as

xi = (fi+vi-- Fi+vy) fi,F;=0Z), 0<vy;<1/2  (2.3.20)

This presentation of the strings is unique except when v; = 1/2 for the same
reason as in type B. We make the same choice as in that case.

The setup attaches to each parameter a Levi component t := g(ng) X
gl(ny)x---xgl(ny) such that L(x) is the spherical subquotient of the induced
module

Ind§i[L(x0) ® X1 ® -+ ® xx]- (2.3.21)
Type D. The orbit @ C so(2n,C), so it is parametrized by a partition
(1o 1,22 ey dys) (2.3.22)
——— —— ——
1 9 Tj

with ro;41 even. We write %h in the usual coordinates as

(0,.00,0,1/2, . 1/2, Gyeisdyens) (2.3.23)
— —— ——

S0 S1/2 Sj



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 9

where

S — (Z 7‘21'_1)/2, 3k—1/2 = Z’f‘gi, Sk — ZT2Z’_1, k Z 1. (2.3.24)
i>k i>k
If one of the r; > 1, then the nilpotent orbit @ meets a Levi component
g(n — 1) x gl(i) and the intersection is an orbit O(n — i) x (i), where (%)
denotes the principal nilpotent orbit in gl(i). We rewrite the parameter
(2.3.23)

(0,...,0,1/2,. .., 1/2, .. G, G —
——— e — ——

/ /
80 51/2 8

1—1 z'—l)
7 Ty

(2.3.25)

where s; are as in (2.3.7).
Rewrite the partition as (2zg + 1,...,2z9,,—1 + 1,a1,4a1,...ag,a;) with
x; < Ti+1. A general parameter x attached to O can be rewritten as

a; — 1 a; —1
k& +Viyeun, Z2

(O,...,O,...,.’L‘Qm_l—1;...;— +Vi;---)- (2326)

S—— 2
m
Condition (2) in the introduction, which says that x cannot be written as

%71 + v for a larger nilpotent @', translates into the following:

(1) the strings with % +1; — aj;1 — vj € Z are nested,

(2) the strings with %L1 4+ 1; € Z satisfy the additional condition that

either zg, +1 < — % L 4+ u; or there is j such that

ai—l ai—l

+y <

zj+1<—

+v <zjp1+ 1. (2.3.27)

We lump the strings (—‘”2_1, ceey ‘“2_1) with a; odd together with the pa-
rameter coming from the z; with z; < x;11, and rewrite x in the form
(2.3.26). The first part, denoted xp, is as in (2.3.24), and corresponds to
an even nilpotent orbit Oy C fi(ng) with partition 2z + 1, ... 229,_1) with
z; < xi41, and will be called unipotent.

We will rewrite the remaining strings as
xi = (fi+vi-- ., Fi+tv) fi, ;=0Z), 0<vy;<1/2  (2.3.28)

This presentation of the strings is unique except when v; = 1/2. We adopt
the same conventions as in types B, C.

The setup attaches to each parameter a Levi component th := g(ng) X
gl(n1)x---xgl(nyg) such that L(x) is the spherical subquotient of the induced
module

Ind$[L(x0) ® x1® -+ ® xx] (2.3.29)
Remark. In type D, a (real) spherical parameter A is hermitian if and only
if there is w € W(D,,) such that wA = —\. If the parameter has entries
equal to zero, then the analysis above is sufficient. If not, there are two
inequivalent spherical parameters, one for A and another for \’ obtained by
applying the outer automorphism of order two. They are either both unitary
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or both nonunitary. With the description above, one string might have to
be written as

(—f—-v,—f+14v,...,F+v). (2.3.30)
If so, we can always consider the other parameter related to it by the outer
automorphism.

2.4. Relation between infinitesimal characters and strings. We also
need to show how to obtain this parametrization in terms of strings from
the infinitesimal character.
Type B. Partition the coordinates of x into subsets Ai, Ao, ... according
to the relation
v; ~ v; if and only if v; +v; or v; — v; € Z.
Write the part formed of half-integers in increasing order
(r—1/2,...,7—=1/2,...,R—1/2,...,R—1/2), 0<r <R integers.
(2.4.1)
Then extract the longest possible string (r—1/2,...,1—1/2). The remaining
parameter is of the same form, so we can continue extracting strings until
there are no coordinates left. The strings that start with 1/2 are lumped to-
gether to form the spherical unipotent representation part of the parameter.
For example if the parameter is

(1/2,1/2,1/2,3/2,3/2,3/2,5/2,5/2,5/2,5/2,7/2),
then the strings are

(1/2,3/2,5/2,7/2), (1/2,3/2,5/2), (1/2,3/2,5/2), (5/2),
and the parameter is
(1/2,1/2,3/2,5/2,5/2,7/2 ; 5/2)
corresponding to the nilpotent orbit @ = (8,6,6,1,1) with Oy = (8,6,6).
For the set formed of integers, write the coordinates in increasing order as
(ry...,r,...,R,...,R), 0 <r <R integers. (2.4.2)

Extract the longest possible string (I,...,0,...,k) (or just (I,...,k) with
[ > 0 if there are no entries equal to 0) by changing entries to their negatives
if necessary. Assume as we may that & > |l/|. The remainder is of the same
form as in (2.4.2), so we can continue until there are no entries left. Then
rewrite the strings in increasing order as in section 2.3.

For example, if the parameter is

(07 0’ 17 1’ 17 1’ 27 37 37 47 5)’
the strings are, following the conventions of section 2.3,
(_57 —4,-3,-2,-1,0, 1)7 (_17 0, 1)a (_4a _3) (243)

This adds the pairs (7,7,3,3,2,2) to the partition corresponding to Oy to
form O.
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For a part which is neither integers nor half-integers, change signs if neces-
sary and rearrange in increasing order

(r+v,...,Tr+v,...,R+v,...,R+v), 0<v<1/2, r <R half-integers.
(2.4.4)
Then extract the longest possible string (r + v,...,l + v). The remainder
is of the same type, so apply the same procedure until there are no entries
left.
For example, if the parameter is

(1/4,1/4,3/4,5/4,5/4),

rewrite it as
(_5/47 _5/47 _1/47 _1/43 3/4-)7

and then extract the strings
(_5/47 _1/47 3/4)7 (_5/47 _1/4)

Type C. Partition the coordinates as for type B. Write the integer part
in increasing order

(ry...,m...,R,...,R), 0<r<R. (2.4.5)

Extract the longest possible string (I,...,0,...,k) with the same conventions
as for type B right after (2.4.2). The remaining parameter is of the same
form, so we can continue until there are no zeroes left. The number of strings
is the m for the special unipotent part of the parameter, and furthermore,
k = xom, | = Top_1. After that, extract the longest possible strings of the
form (I,...,k) with & > [ > 0 until there are no entries left. If the longest
such string starts with a 1, then its largest entry is zg, otherwise set ¢ = 0.
For example, if the strings are as in (2.4.3), the unipotent parameter has
Oy = (11,3,3,3,1), O = (11,3,3,3,2,2,1), and the unipotent part of the
parameter is
(0,0,1,1,1,1,2,3,4,5).

For the half-integer part, write it as

(r—1/2,...,7—1/2,...,R—-1/2,...,R—1/2), 0 < r < R integers.

(2.4.6)

Change signs of coordinates if necessary, and extract the longest possible

string of the form (I —1/2,...,k+1/2). The remainder is of the same form

as in (2.4.6), so we can repeat the procedure until there are no entries left.

Rewrite the strings to conform to the conventions of section 2.3.

For the rest of the parameter which is formed of neither integers nor half-

integers, use the same method as for type B.

Type D. Partition the coordinates as for types B, C. Write the integer

part in increasing order

(ry...,ry...,R,...,R), 0<r<R. (2.4.7)
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Extract the longest possible string (I,...,0,..., k) with the same conventions
as for type B right after (2.4.2). The remaining parameter is of the same
form, so repeat the procedure until there are no zeroes left. The number of
strings is the m for the special unipotent part of the parameter. Furthermore,
assuming as we may that |I| < k, we get k = o, | = xom,—1. After that,
extract the longest possible strings of the form (I,..., k) with £ > [ > 0 until
there are no entries left. For example, for the strings in (2.4.3, the nilpotent
orbit Oy = (11,3,3,3) and O = (11,3,3,3,2,2).

For the half-integer part, write it as
(r—1/2,...,7—=1/2,...,R—1/2,...,R—1/2), 0<r<R. (2438)

Then extract the longest possible string of the form (I —1/2,...,k +1/2),
by changing entries into their negatives if necessary. The remainder is of the
same form as in (2.4.8), so we can continue until there are no entries left.
Rewrite the strings as in section 2.3.
For the rest of the parameter, which is formed of neither integers nor half-
integers, apply the same procedure as for types B, C.

Note also that the Weyl group of type D consists of permutations and
even number of sign changes. if we change a single sign, we are applying an
outer automorphism. but the remark from section 2.3 applies.

2.5. Summary. In conclusion, to each spherical parameter y we have as-
sociated a nilpotent orbit @ in the dual algebra and a Levi component
M = G x GL(k1) x --- x GL(k,). The nilpotent orbit © meets the dual
algebra, o x gl(k1) x ...gl(k;) to give an even nilpotent Oy on §o and the
principal nilpotent orbit on each of the gl(k;). In addition we have associ-
ated a spherical parameter (xo, X1,---,Xr) such that xo is half the semisim-
ple element of the Lie triple corresponding to Oy, and the other x; are
1-dimensional. Then L() is the spherical subquotient of

Ind§[L(x0) @ X1 ® -+ ® xo)- (2.5.1)
2.6.

Theorem. The module Ip;(x) equals L(x) in the p-adic case. In the real
case equality holds whenever the coordinates of the x; with 1 > 1 are not
congruent to the coordinates of xo modulo Z. In the real case in general, the
multiplicities of the relevant K-types in L(x) and Ip;(x) coincide.

Proof. In the p-adic case it follows from [BM] that the two modules are
equal. In the real case, if the v; in the character x; is not an integer or
half-integer and M := G(n —n;) X GL(n;) and Las :== L(X0,- -+ Xjs--- 1 Xr)
then

Ing == Ind§;[Ly ® x;] (2.6.1)
is irreducible by the Kazhdan-Lusztig conjectures for nonintegral infinites-
imal character. We omit the details, see [ABV]. The last assertion is a
rewording of theorem 5.3 and corollary 5.3. O
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2.7.  We record the following refinement of theorem 2.6. Let @ be a nilpo-
tent orbit corresponding to the partition

(TOy--sTOye ey Ty ensTiy)- (2.7.1)
e e —

T0 Tm

Assume that r; > 1 for some 7, and denote z; by z. Then O meets the
parabolic subalgebra th = §(n — x) x gl(z). Let Oy be the nilpotent orbit
in §(n — x) corresponding to the partition

(Z0y ey @Oy e s Tigevn s TiyeneyLamynensTin)-

N——

T0 ri—2 Tm

Write x := Xx», XM = X@,,- Then L(x) is the spherical subquotient of
Ine(x == Ind$,[L(xm) ® triv].

Theorem. The representation Ipn(x) is irreducible in the following cases:

(1) Type A, all cases,
(2) Type B, whenever r; > 2 or x is odd,
(3) Type C,D whenever r; > 2 or z is even.

The representation In(x) is reducible in all other cases.

Proof. In the p-adic case this is again [BM]. For the real case, the proof is
in section 10. O

3. THE MAIN RESULT
3.1. First formulation. The main result can be summarized as follows.

Theorem. A spherical representation is unitary if and only if it is a com-
plementary series from an induced from a special unipotent representation
tensored with a GL-complementary series.

We now describe these parameters in precise terms. We assume the con-
ventions in section 2. In particular recall € in definition 2.3, e = 1/2 for type
B and € = 0 for types C, D.

Let L(x) be spherical with x = (xo0,Xx1,---,Xx%)- We will want to deform
the v’s that the representation stays induced irreducible, but we will also
consider the endpoint of such an interval and the corresponding spherical
factor.

The necessary conditions for unitarity are (A), (B), (AB), and (C1)-(C3).
For condition (B) we need the following definition.

Definition. Set e =1/2, in type B and e = 0 in type C, D. We say a string
(f+v,...,F +v) with f, F = e(mod 2) is adapted, if it is

of even length in type B,
of odd length in type C, D.
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Otherwise we say it is not adapted. Two strings are of the same type if they
are both adapted or both not adapted. [l

(A): The part of the parameter formed of entries congruent to e (mod Z)
is special unipotent .

(B): Any string that is not adapted is of the form
(-E+v,...,E—1+v) 0<v<1/2, E=¢2). (3.1.1)

This string is of size 2F.
Any adapted string is of the form

(-E+v,...,E+v) 0<v<1/2, E=¢€Z) (3.1.2)
or
(-E-1+v,....,E—-1+4v) 0<v<1/2, E=¢2). (3.1.3)
These strings are of size 2F + 1.

The reason for the definition of adapted is as follows. Suppose for sim-
plicity that £ = 1 i.e. there is just one string x; aside from yo. If it is as in
(3.1.1), deforming v; to 1/2 gives a unitarily induced irreducible representa-
tion. But if it is as in (3.1.2) or (3.1.3), deforming v; to 0 or 1 respectively
gives a unitarily induced module which is not necessarily irreducible (¢f. (C3)
and theorem 2.7).

In general, suppose L(x) = Ip; with notation as in the proof of theorem
2.6. If we can deform a v; to 1/2 in (3.1.1), 0 in (3.1.2) or 1 in (3.1.3) and
no reducibility occurs, then L is unitary if and only if Lj, is unitary. So
it is enough to decide the unitarizability of Lj; on the lower rank group.
In such a situation we say that we can remove x;. The following lemma

and proposition are useful in formulating the necessary conditions (AB) and
(C1).

Lemma. The representation corresponding to a pair of strings
(—E—-v,...E—v) and (-E+v,...,E+v) in GL(n) is a complementary

series for v < %, and is not unitary for v > %, 2v ¢ 7.

Proof. This is well known and goes back to [Stein] (e.g. [T] and [V1]). O

Definition. Consider two strings of the same type as in (3.1.1-3.1.3) with
parameters vi, vo. We say that they are adjacent, if they have the same type
and same E, and either v1 = vy, or 11 # v and there is no other string of
the same type with the same E and parameter v in between vy, vs.

Proposition. Assume that (A) and (B) are satisfied. Deform a v; in a
string as in (3.1.1-3.1.3) in the interval (0,1/2].
(1) For case (3.1.1) no reducibility can occur.

(2) For case (3.1.2) reducibility occurs only if the parameter has a string
of type (3.1.8) with the same E.
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(3) For the case (3.1.3) reducibility occurs only if there is a string of
type (3.1.2) with the same E.

Proof. Consider a string as in (3.1.1) with 0 < v; < 1/2 and deform v;; call
the deformed parameter v. If the induced representation becomes reducible,
there must be another string (f + v;,..., F 4+ v;) such that F +v; — E — v
or FF+v;+ E + v is an integer. Since E+ F € Z,and 0 < v, v; < 1/2, we
must have v = v;. Furthermore,

-E-1<f<E<LF or f<—-E-1<F<E. (3.1.4)
Neither case can occur given that the strings are of type (3.1.1-3.1.3).

Deform a string as in (3.1.2). For reducibility to occur there has to be
another string (f + v4,..., F + v;) such that

—-E<f<E<F or f<-E<F<E. (3.1.5)

The first case implies F' + f > 0 which cannot occur given (3.1.1-3.1.3). In
the second case, the choices are

~F<-E<F-1<E, -F<-E<F<E, -F-1<-E<F-1<E.

It follows that F' = E and the string with v; is type (3.1.3). The last case is
similar. (]

The argument above shows that we can remove strings of type (3.1.1) by a
complementary series argument deforming v; to 1/2.

Thus assume there are no strings of type (3.1.1).

Suppose there are two adjacent strings with the same E as in (3.1.2) with
parameters v; < v;. Then L is induced from an L ® x; ® x;. No reducibility
occurs when we deform v; to v;. When v; = v, the representation is unitarily
induced irreducible from a 7 ® Ly on GL(4E + 2)G(n — 4E — 2) where 7
is a complementary series as in lemma 3.1. Thus L is unitary if and only if
Ly is unitary; we can remove x;, X; from the parameter. In case (3.1.3)
the representation 7 is not unitary and we conclude that L is not unitary.

We summarize these properties.

(AB): The strings for a fixed E that are not adapted all come from
complementary series from induced from Triv® Ly on GL(2E)G(n—
2F). Adjacent strings of same E, and adapted as in (3.1.2), are in a
complementary series from an 7; ® Lys on a GI(4E+2)G(n—4E —2)
as in lemma 3.1.

(C1): No two strings of type (3.1.3) with the same F can be adjacent.

The strings in (AB) can be removed from the parameter; the ensuing
parameter is unitary if and only if the original parameter is unitary. We
have reduced to the case when for a given E, there is at most one string for
each value of v; and they must alternate between (3.1.2) and (3.1.3) with
increasing v. Suppose there is more than one string present, and label the
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Vsas 0 < vy <vg <+ < VUp_1 < Vpy. Suppose the one with parameter v,
is of type (3.1.3). Necessarily the string corresponding to vy, 1 is of type
(3.1.2). Then we can deform v, upwards to 1 — v,_1, and see that this is
induced irreducible from a representation which is unitarily induced from
a Levi component GL(4E + 2)G(n — 4E — 2) (a complementary series on
GL(4E +2)). Such a pair can be removed from the parameter; the ensuing
parameter is unitary if and only if the original parameter is unitary.

On the other hand, suppose the string with parameter v, is of type (3.1.2).
Deforming v, upwards to 1 — v,,,_1, gives a parameter that is not unitary
by lemma, 3.1. Thus

(C2): the strings (3.1.2, 3.1.3) for a given E (assuming there is at
most one string for each v,) must alternate between the two types.

If there are strings of type (3.1.3), the one with the largest v is type
(3.1.3).

We can remove such pairs of strings, starting with the largest v,,; the
ensuing parameter is unitary if and only if the original parameter is unitary.
We are reduced to the case when there is only one string of type (3.1.2,3.1.3).
Reducibility of unipotent parameters suggests the following.

(C3): In the case of a single string of type (3.1.2) or (3.1.3) of size E,
there must be at least one x; = E + € in the tempered parameter.

Thus to see whether a parameter is unitary, one checks whether (A)-(C)

are satisfied. First we check that (A) and (B) are satisfied. If so, then remove
the GL—complementary series in step (AB). Then check for adjacent strings
of type (3.1.3) as in (C1). If none are present, remove the complementary
series from step (C2). What should result is either a parameter which is
tempered or one as in (C3).
Remark. In the case of type D, the condition for a representation to be
hermitian is different from types B and C. There is no change to the argu-
ment for (AB), (C1) and (C2), because they involve pairs of strings. For
(C3), if there is a single string present, then the tempered part of the pa-
rameter must be nontrivial, otherwise the parameter is not hermitian. The
argument is unchanged otherwise.

3.2. Second form. The main result admits the following more invariant
description. Let G be the (complex) dual group and A C G the maximal
torus dual to A. Assuming as we may that the parameter is real, a spherical
irreducible representation corresponds to an orbit of an element y € @, the
Lie algebra of A. In section 2 we attached a nilpotent orbit @ in § to such a
parameter. Let €, ﬁ,f be a Lie triple attached to O, and let X = %ivz By
conjugating x5, we can write

X1 =Xp+Vv (3.2.1)
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in such a way that v centralizes the whole Lie triple. This is as follows. The
coordinates of xo go into xz; the corresponding coordinates in v are 0. The
coordinates coming from g¢l(n;) parameter can be written as

n; — 1 n; — 1

( 2 7 2
The first part goes into x5, the second one into v. The nilpotent orbit O
determines a partition

)+ vi(1,...,1). (3.2.2)

(@1yeees@1yeney gy ey ), a; < aj41 (3.2.3)

where 7y is the sum of the number of n; = a; and the number of the elements
in the partition for @y equal to a;.
The centralizer Zy(&,h, f) has Lie algebra 3(O) which is a product of

sp(ry, C) or so(r;,C) 1 <1 < k according to the rule

Type B, D: sp(r;) for a; even, so(r;) for a; odd,

Type C: sp(r;) for a; odd, so(r;) for a; even.
The parameter v gives rise to a spherical one for 3((7)) as follows. For each [,
take the v; in (3.2.2) for which v; = g; and a 0 for each term in the partition
of @y equal to a;. The results in section 3.1 can be written in terms of v.
The set for which L(x) is unitary will be called the complementary series
attached to O.

Theorem. The complementary series attached to O coincides with the one

attached to the trivial orbit in 3(O). These are:
B: 0<v,..., 11 <+ < Vpyeoo,Vp < 1/2.
C,D: 0<v,...,01 <+ < Voo U < 1/2 g <<y <1
so that v; +v; # 1 for i # j and there are an even number of v; such that
1 —vpp1 < vy <1/2 and an odd number of v; such that 1 — vy 1 < vy <
1-— Vi4j-

The passage to the parameters in 3.1 is to change vy ; for types C, D to
1-— Vitj-

4. RELEVANT K-TYPES

In the real case we will call a K-type (i, V) quasi-spherical if it occurs
in the spherical principal series. By Frobenius reciprocity V™ #£ 0 and the
Weyl group W (G, A) acts on this space.

The representations of W (A, _1) = S, are parametrized by partitions of n,
written as (ai,...,ax), a; < a;y1. The representations of W(B,,) = W(C,)
are parametrized as in [L1] by pairs of partitions

(al,...,ak) X (bl,...,bl),
a; < aj41, bj <bjqa, Zai + ij =n. (4.0.4)

Precisely the representation parametrized by (4.0.4) is as follows. Let k =
>-ai, I = > bj. Recall that W = S, x Z3. Let x be the character of Z%
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which is trivial on the first k Zo’s, sign on the rest. Its centralizer in S, is
Sk x S;. Let 01 and o9 be the representations of Sy, S; corresponding to the
partitions (a) and (b). Then o, the representation parametrized by (4.0.4),
is

I”d&xs,)ng [(o01 X 02) X x]-

For W(D,,), the representations are parametrized as in (4.0.4) except that
(a) x (b) and (b) X (a) parametrize the same representation and when (a) =
(b), there are two of them (a) x (a)r, ;7. This is because the restriction of
(a) x (b) to W(D,,) is irreducible when (a) # (b) and equal to the restriction
of (b) x (a), while the restriction of (a) x (a) consists of two nonisomorphic
irreducible representations (a) X (a)z, r7. These are usually easy to deal with.

4.1. Symplectic Groups. The group is Sp(n) and the maximal compact
subgroup is U(n). The K-types of the form

(2,...,2,2,...,2,1,...,1,0,...,0,-1,...,—1,—1,...,—1).  (4.1.1)
—— e e N — - N

>y

~~

r m k l k 2m

are all quasi-spherical. The dual K-types are also quasi-spherical, we ignore
them because they behave the same way.

Proposition. The M-fized vectors of a K-type u as in (4.1.1) form an
irreducible representation of W(Cy,) corresponding to the pair of partitions

(m,k+m,k+1+m) x (r). (4.1.2)

Proof. This follows by induction on the rank of Sp(n) using the restriction
formula from U(n) to U(1) x U(n — 1) and the restriction formula from S,
to Sp—1 and its generalization to W(C,,). Here are the details.

Consider the case n = 1. There are only two representations, the trivial
representation with highest weight (0) and the symmetric square of the
standard representation, (2). Write U(1) = {e¢%}. Then we can identify M
with {£1} and the normalizer of the split Cartan subalgebra is {a : a* =
1}. The assertions are clear.

Consider the case n = 2. There are four representations of U(2) with
highest weights (2,0), (1,—1), (2,2) and (0,0). The first representation is
the symmetric square of the standard representation, the second one is the
adjoint representation and the third one is the trivial representation. The
subgroup M C U(2) can be identified with the diagonal subgroup (+1,+1)
inside U(1) x U(1) C U(2). The Weyl group is generated by the elements

b B 1) ar
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The space VM can be read off from the restriction of the representation to
U(1) x U(1) which is

(2,00 = @)@ 0)+(M) e 1) +(0)®(2)

(1,-1) — D e(-1)+0)e0)+ (1))
(2,2) — (2)®(2) (4.1.4)
(0,0) — (0) ® (0)

The claim for the last one is clear. The third one is 1-dimensional so VM
is 1-dimensional; the Weyl group representation is (0) x (2). The second
one has VM 1-dimensional and the Weyl group representation is (11) x (0).
For the first one, VM is 2-dimensional and the Weyl group representation
is (1) x (1). These facts can be read off from explicit realizations of the
representations.

Assume that the claim is proved for n — 1. Choose a parabolic subgroup
so that its Levi component is M’ = Sp(n — 1) x GL(1) and M is contained
init. Let H = U(n — 1) x U(1) be such that M ¢ M'N K C H. The
restriction rule from K to H is well known. We will only use the cases when
m = 0 and either kK = 0 or r = 0. We call these relevant. Suppose that
m = 0 and k = 0. The cases when [ = 0 or r = 0 are 1-dimensional and are
straightforward. So we only consider [, r > 0. The K-type restricts to

2,...,2,0,...,0)® (0 4.15

( (0) (4.1.5)
l r—1

2,...,2,1,0,...,0)® (1 4.1.6

( ) ® (1) (4.1.6)
-1 r—1

0,...,0,0,...,0)® (1 4.1.7

( (1) (4.1.7)
-1 r

Only (4.1.5) and (4.1.7) can contribute to V™ and these are the represen-
tations

The Weyl group representation (4.1.8) can only come from

(1,1 — 1) x (r)] (4.1.10)
(1) x (r)] (4.1.11)

The case (4.1.10) has (1,] — 1) x (r — 1)] in its restriction which does not
occur in (4.1.8)-(4.1.9). Thus the claim is proved in this case.
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Consider the case m = 0 and r = 0. The case kK = 0 is 1-dimensional so
straightforward. So assume k& > 0. If [ > 0 the K-type restricts to

(1,...,1,0,...,0,—1,...,—-1) ® (-1) (4.1.12)
N N e

k l k—1
1,...,1,0,...,0,—1,...,-1)® (1 4.1.13
( l k ) ® (1) ( )

k—1
(1,...,1,0,...,0,—1,...,—-1) ® (0) (4.1.14)
—— —— — ———

k—1 +1 k—1
(1,...,1,0,...,0,—1,...,—1) ® (0) (4.1.15)
e N e ——

k -1 k

Only (4.1.14) and (4.1.15) contribute to V™. The Weyl group representa-
tions are

[(k—1,k+1)x (0)]®[(1) x (0)] (4.1.16)
[(k,E+1-1)x(0)]®[(1) x (0)] (4.1.17)

The representations (4.1.17) can only come from the restriction of (1, %,k +

[—1)x(0) or (k,k+1)x(0). If £ > 1 the first one contains (1,k—1,k+1—

1) x (0) in its restriction which is not in (4.1.16) or (4.1.17). If K = 1 then

(4.1.17) does not occur in the rstriction. So (k,k + 1) x (0) has to occur as

well. But then the restriction is too large. The claim is proved in this case.
Consider the case when none of k, [, m, r are zero.

The K-type in (4.1.1) restricts to

(2,...,2,1,...,1,0,...,0,—1,...,-1) ® (1) (4.1.18)
LA A s S

r+m k l k+2m—1
2,...,2,1,...,1,0,...,0,—1,....—1)® (0 4.1.19
( 1. ) ® (0) ( )

T+m k -1 k+2m
2,...,2,1,...,1,0,...,0,-1,...,-1) ® (0) (4.1.20)
—— —— —— — —(—

r+m k—1 +1 k+2m—1
2,...,2,1,...,1,0,...,0,—1,....,-1) ® (0 4.1.21
( ) ® (0) ( )
r+m—1 k+1 l k+2m—1
(2,...,2,1,...,1,0,...,0,—1,...,-1) ® (1) (4.1.22)
e e e e e

r+m k—1 l k+2m
2,...,2,1,...,1,0,...,0,—1,...,—-1) ® (1 4.1.23
( ) ® (1) ( )
r+m—1 k+1 -1 k+2m
(2,...,2,1,...,1,0,...,0,—1,...,-1) ® (1) (4.1.24)
r+m—1 k +1 k+2m—1
2,...,2,1,...,1,0,...,0,-1,...,-1) ® (2) (4.1.25)
LA A e S

r+m—1 k l k+2m
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Only (4.1.19-4.1.21) and (4.1.25) can contribute to VM. By the induction
hypothesis, the representations of W (C,,_1) x W(C}) are

[(m,k+m,k+m+1—-1) x (r)]®[(1) ® (0)] (4.1.26)
[((m,k—14+mk—1+m+1)x(r)]®[(1) ®(0)] (4.1.27)
(m—-1Lkl+m-1k+1+14+m—1)x(r)]®[(1) @ (0)] (4.1.28)
)] ® [(0) ® (1)] (4.1.29)

[(m,k+m,k+m+1) x(r—1
t

Now consider the representation (4.1.26). It can only occur in the restriction
of

[(m,k+m,k+m+1) x (r)] (4.1.30)
[(m,k+m+1,k+m+1)x (r)] (4.1.31)
[[(m+1,k+m,k+m+1) x(r)] (4.1.32)

The restrictions of (4.1.31) or (4.1.32) contains representations that are not
in the list (4.1.26)-4.1.29). O

4.2. Orthogonal groups. Because we are dealing with the spherical case,
we can use the orthogonal groups instead of their connected components.
We follow Weyl’s conventions to parametrize the representations of O(n).
Embed O(a) C U(a) in the standard way. An irreducible representation of
O(n) is parametrized by

(al,...,ak,O,...,O;e), a; ZaH_l, €= =%1. (4.2.1)

The € is (sometimes) abbreviated as +. It is the irreducible representation
generated by the highest weight vector of the irreducible representation of
U(a) with highest weight
(a1,...,ax,1,...,1,0,...,0). (4.2.2)
———’
n—(1—e)k
The restriction of this representation to O(a—1)xO(1) is as follows. Restrict
the representation of U(a) with highest weight (4.2.2) to U(a—1)xU(1). The
representations on U (a — 1) which correspond to irreducible representations
of O(a—1) as in (4.2.1-4.2.2) give the factors in the restriction. The character
corresponding to an even integer on U (1) gives a (+), an odd one a (—). We

list the cases explicitly. Suppose a = 2n, and the highest weight is of the
form

(a1,...,an), ap > 0. (4.2.3)

When a,, > 0, the representation of O(2n) decomposes into two irreducible
factors of the same dimension whne restricted to SO(2n). Its restriction to

O(a—1) x O(1) is ., <p<a, (b1 - -, bu1;¢) ® (1), with

! ; €= Zai - Z bj(mod 2). (4.2.4)
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In case a, = 0, the restriction is Z (b1,...,bp—1; @) ® (€), with
ai+1<b;<a;

1—ce¢ l-«a
5 = Zai — ij + T(mod 2). (4.2.5)

When a = 2n + 1, the restriction of (ai,...,a,;a) to SO(2n + 1) is irre-
ducible. Its restriction to O(2n) x O(1) is

Z (b1, ;) ® (€)

a;i+1<b;<a;

with

1—e€ -«
5 = Zai — ij + T(mod 2). (4.2.6)

In this formula we assume a,4+1 = 0.

For O(n,n) we use the K-types

0,...,0;4+)®(2,...,2,0,...,0;4) (4.2.7)
N——
(1,...,1,0,...,0;¢) ® (1,...,1,0,...,0;¢€) €=+. (4.2.8)
N—— N——
k k

The restriction of (4.2.8) to S[O(n) x O(n)] is independent of e. We will
show that the representations of W (D,) on VM are irreducible. Precisely,
the representation of W on VM is

(r,n —7) x (0) +— (4.2.7) (4.2.9)
(n—k)® (k), k<[n/2] +— (4.2.8) with +, (4.2.10)
(n—k)®(k), k>I[n/2| > (4.2.8) with —. (4.2.11)

For O(n + 1,n) we use
0,...,0;+)®(2,...,2,0,...,0;+) (4.2.12)
——

r
(1,...,1,0,...,0: 1) ®(L,...,1,0,...,0:+)  for k< [n/2] (4.2.13)
S—— SN——

k k

(1,...,1,0,...,0;-)®(1,...,1,0,...,0; —) forn > k > [n/2]
——— ——
n+l1—k n—k

(4.2.14)

The corresponding representations of W (B,,) on VM are
(rym —1) x (0) +— (4.2.12) (4.2.15)
(n—k)®(k), k<In/2] +— (4.2.13) with +, (4.2.16)
(n—k)®(k), k>I[n/2] +— (4.2.14) with —. (4.2.17)
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The group M is the diagonal group O(1) x --- x O(1) inside

0(1) x -+ x 0(1) x 0(1)...0(1),  a=0,1

~~
n-+a n

\
.
\

where the first O(1) is diagonal inside the 1’st and n + a + 1’st and so on
up to n and 2n, and the n + a’th by itself.

Consider cases (4.2.8) and (4.2.16-4.2.17). The representations can be
realized as AFC"t% @ A¥C™. Let e; be a basis of C*t¢ and fj a basis of C".
The space VM is the span of the vectors e;; A+ Aej, ® fiy A+++ A fi,. The
representation of W(By,) = S,, X (Z2)" on this space is the induced from the
trivial representation on Sy x S;,_j tensored with the sign representation on

Z% and the trivial representation on Z’Q‘_k. This is precisely what (4.2.10-
4.2.11) and (4.2.13-4.2.14) state.

For cases (4.2.7) and (4.2.12) we have to use the restriction rules from
O(n) to O(n — 1) x O(1).

Formulas (4.2.9-4.2.15) are easily proved for n = 1. For the rest we do an
induction.
Write po(r) for the K-type

0:4) @ (2,...,2,0,...,0;+) (4.2.18)
S—— ——
r n—r

In cases O(2n + 1,2n) and O(2n,2n) the Weyl group is W (Bz,), while in
the cases O(2n,2n — 1) and O(2n —1,2n — 1) it is W (Bz2p—1). We only give
details for part of the proof of the induction step. For O(2n + 1,2n + 1),
the restriction of p,(r) to O(2n) x O(1) x O(2n) is irreducible. The result
follows from the induction hypothesis and the fact that M and W (B,,) are
contained in this subgroup. For O(2n,2n), the representation with r = 0 is
trivial and the result holds. Thus assume 7 > 0. The Weyl group is W (Ba,).
Then p,(r) restricts to O(2n) x O(2n — 1) x O(1) to

fio(r) ® (+) (4.2.19)
(2, _1 2, 1,0,._. ._,10) ®0;+)® (-) (4.2.20)
po(r —1) ® (+) (4.2.21)

Then M is contained in this subgroup and O(2n) x O(2n —1) is the maximal
compact subgroup of O(2n,2n — 1). So the induction hypothesis applies.
Only (4.2.19) and (4.2.21) contribute to V™ and (4.2.19) does not occur
when 7 = n. The intersection of W (Bjy,) with this subgroup is W (Ba,_1).
By the induction hypothesis, the representations of W (Bg,—_1) on the M-
fixed vectors of (4.2.19), (4.2.21) are

(r,2n —1—1) x (0), (r—1,2n — 1) x (0). (4.2.22)
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If r > 1, then (r — 1,2n — r) can only come from

(r,2n) x (0), (4.2.23)
(I,r —1,2n — 1) x (0), (4.2.24)
(r—1,2n+1) x (0). (4.2.25)

But (4.2.24) contains (1,7 —1,2n —r —1) x (0) in its restriction and (4.2.25)
contains (r —2,2n + 1 —r) x (0) in its restriction, so VM must be (4.2.23)
as claimed. If r = 1, (0,2n — 1) x (0) can only come from

(1,2n — 1) x (0), (4.2.26)
(0,2n) x (0). (4.2.27)

If (4.2.27) occurs in VM then (4.2.26) has to occur as well to account for
(1,2n — 2) x (0). But then (0,2n — 2) x (0) would occur more than once, a
contradiction.

Remark. In the cases of type D, the Weyl group that is relevant for the
calculations with the intertwining operators are type D. In formulas (4.2.10-
4.2.11) for k < [n/2], the Weyl group representations of W(B,,) restrict to
the same representation of W (D)), and there is no need for k¥ > [n/2]. For
k = [n/2], the representation in (4.2.10), (4.2.11) decomposes into the sum
of (n) x (n)r,r7. But so does the restriction of the representation in (4.2.8)
and each factor contains only one of the Weyl group representations.

4.3. General linear groups. The maximal compact subgroup of GL(n,R)
is O(n), the Weyl group is W (A4,,—1) = S, and group M = O(1) x --- x O(1).

"
n

In this case we use the K-types with highest weights

The corresponding Weyl group representations on VM are u(k,n — k) :=
(k,n — k). We omit the details.

4.4, Unitary groups. Let U(p,q) be a unitary group with p > ¢. The
maximal compact subgroups is U(p) x U(q), and we can identify

M=ZU(p-q)x y(l) X +ee X U(l)} (4.4.1)

q
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where eaqch U(1) is embedded diagonally on the p — g 4+ ¢ and p + i entry.
The Weyl group is W (By). The relevant K-types are

pt=(1,...,1,0,...,0) ®(0,...,0,—1,...,—1) k<gq, (4.4.2)
N—— —
k k
. =(0,...,0,-1,...,-1)®(1,...,1,0,...,0 k<gq, 4.4.3
pe = ( ) ® ( ) q (4.4.3)
k k
_ q
= (0,... 1,...,1,0,...,0,—1,...,— < [3]. 4.
:u‘o (0’ ’O) ® (( 7 ? ’07 70’ 17 7 1 k — [2] (4 4 4)
k k

We will suppress the + superscripts; the p. behave the same way and there
is only one p, that we will consider. The same argument as for Sp(n)
shows that VM is an irreducible representation representation of W. The
correspondence is

pe(k,q — k) +— (g — k) x (k),
to(k,q — k) <— (k,q — k) x (0).

4.5. Orthogonal groups. Let O(p,q) be an orthogonal group with p >
g + 1. The maximal subgroup is O(p) x O(g) and we can identify

M=Z0(p—q)x 9(1) x---x 0(1) (4.5.1)

7

q

with the O(1)’s embedded diagonally just as in the case of the unitary
groups. The Weyl group is of type W (B;). We use the same relevant K-
types as in the case of the split orthogonal groups. The same arguments
show that

pe(k,qg — k) & (¢ — k) x (k), k <gq, (4.5.2)
po(k,q — k) < (k,q — k) x (0), k<[] (4.5.3)
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4.6. Summary. In type A and types B, C, D for (m,n —m) x (0) the
condition m < [5] has to hold.

Type \%4 VM
Al (2,...,2,0,...,0;4) p(m,n —m),
——
m

B,D (1,...,1,0,...,0;+)® (1,...,1,0,...,0;+) (n —m) x (m),

S—— S——

m m
0,...,0;0+)®(2,...,2,0,...,0;0+) (m,n —m) x (0),
S—— S—— —

AIl, C (2,...,2,0,....0 n—m) x (m),
( ) ( ) % (m)

m
1,...,1,0,...,0,—-1,...,-1 m,n —m) X (0).
( ( ) < (0)

m m

Definition. The above K-types will be called relevant. Denote them by
p(m,n —m):= (m,n —m),
pe(m,n —m):= (n—m) x (m),
po(m,n —m) := (m,n —m) x (0).
We will write pe(m) and p,(m) when there is no danger of confusion what
n 1s.

5. INTERTWINING OPERATORS

5.1. Let w € W. Then there is an intertwining operator
Iw,v): X(v) — X(wv). (5.1.1)
If (u4,V) is a K-type, then I induces a map
Iv(w,v) : Homg [V, X (v)] — Homg [V, X (wv)]. (5.1.2)
By Frobenius reciprocity, we get a map
Ry (w,v) : (V)M — (V)M (5.1.3)

In case (u,V) is trivial the spaces are 1-dimensional and Iy (w,v) is a
scalar. We normalize I(w,v) so that this scalar is 1. The Ry (w,v) are
meromorphic functions in v, and the I(w,v) have the following additional
properties.

(1) If w = wy -we with £(w) = £(w1) +4(w2), then I(w,v) = I(wy,wav)o
I(wg,v). In particular if w = sq, - - - Sq, is a reduced decomposition,
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then I(w) factors into a product of intertwining operators I;, one
for each sq;. These operators are

Ij © X(sa;py---8ay V) — X(8a; -+ 8a; " V) (5.1.4)

(2) Let P = MN be a standard parabolic subgroup (so A C M) and
w € W(M, A). The intertwining operator

I(w,v) : X(v) = IndG[Xpy (V)] — X (wv) = IndS[Xpr(wv)]
is of the form I'(w,v) = Ind$,[In (w,v)].
(3) If Re(v, ) > 0 for all positive roots «, then Ry (wg,v) has no poles,
and the image of I(wg,v) (wy € W is the long element) is L(v).

(4) If —7 is in the same Weyl group orbit as v, let w be the shortest
element so that wy = —7. Then L(v) is hermitian with inner product

(v1,v2) 1= {1, I(w, V)va).
Let a be a simple root and P, = M,N be the standard parabolic subgroup
so that the Lie algebra of M, is isomorphic to the si(2,R) generated by the
root vectors Fio. We assume that E, = —E_,. Let D, = /—1(E, — E_,)
and s, = eV~1mDa/2 Then s2 = mg is in M N M,. Since the square of
any element in M is in the center and M normalizes the the root vectors,
Adm(D,) = £D,. Grade V* = @V;* according to the absolute values of
the eigenvalues of D, (which are integers). Then M preserves this grading

and
V"= P v

The map 1, : sl(2,R) — g determined by

01 01
’lpa |:0 0:| = EOU ¢a |:O O:| = E—a
determines a map
U, : SL(Z,R) — G (5.1.5)
with image G, a connected group with Lie algebra isomorphic to sl(2,R).
Let R, be the maps (5.1.3) for G,.
Proposition. On (V5 )M,

Id if m =0,

RV(SOU ]/) = 2 . ~
j+1-<v,a> .
o<j<m s7717<ras 14 if m 7 0.

In particular, I(w,v) is an isomorphism unless (v,d) € —N.

Proof. The formula is well known for SL(2, R). The second assertion follows
from this and the listed properties of intertwining operators. O

Corollary. For relevant K-types the formula is
Id on the +1 eigenspace of sq,

RV(Sa, V) = 1—<v,&> Id
1+<v,a>

on the -1 eigenspace of Sq.
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When restricted to (V*)M, the long intertwining operator is the product of
the R, corresponding to the reduced decomposition of wg and depends only
on the Weyl group structure of (V*)M.

Proof. Relevant K-types are distinguished by the property that the eigen-
values of D, are 0, £2 only. The element s, acts by 1 on the zero eigenspace
of D, and by —1 on the +2 eigenspace. The claim follows from this. O

5.2.  We now show that the formulas in the previous section coincide with
corresponding ones in the p-adic case. Recall from [BM3] that the induced
module is X (v) := H®a 1, where H = C[W] x A (corresponding to the dual
root system) is the graded affine Hecke algebra. The abelian subalgebra A is
generated by w € S(a) (a = Lie(A)) and C[W] is generated by {tq}a simple
satisfying t2 = 1. They are subject to the relations

Wty = Sq(W)tq + ¢o < w, & >, w € S(a). (5.2.1)

The scalars ¢, are assumed invariant under the action of the Weyl group on
the roots. The intertwining operator I(w,v) is a product of operators I,,
according to a reduced decomposition of w = 54, -+ 84,. If @ is a simple
root,

1

?
a— Cqy

Ta = (ta@ — €q) Iy : z®1, —» zra @ 1. (5.2.2)

We normalize the ¢, so that ¢, = 1 for the roots of the form ¢; & ¢;. We
only need to consider type A and D with ¢, = 1 and type B with ¢, = ¢
arbitrary for « a short root. This is because type C is equivalent to type B
by setting cq = ¢/2 for the long roots.

We consider the split cases first. Then ¢, = 1 for all roots. The I(w,v)
have the same properties as in the real case. The r, are multiplied on the
right, so we can replace @ with —(v, @) in the formulas. Furthermore,

Cw]=> V.oV
oW

Since 1, acts as multiplication on the right, it gives rise to an operator
To(Sa,v) : V — V.

Theorem. The Ry (sq,v) for the real case on relevant K-types coincide
with the 14 (sq,v) on the V= (V)M

Proof. The operators R, and r, act the same way:

( - Id on the + 1 eigenspace of %, (5.2.3)
To\Sa ¥ 1;253; Id on the — 1 eigenspace of t, o

The assertion is now clear from corollary (5.1) and formula (5.2.2). We
emphasize that the Hecke algebra is for the dual root system so that there
is no discrepancy between o and ¢ in the formulas. O
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5.3. We identify the relevant K-types with the corresponding Weyl group
representations. Recall that a special unipotent parameter is given by an
even nilpotent in the dual algebra as in sections 1.2. Let x(o be the infini-
tesimal character. We attach two parabolic subgroups to such a parameter,
P, and P, with Levi components

GL(.TQm_l + .’I,'Qm_g) X+ X GL(.Tl =+ .’L‘()) X G(:I:gm)
GL(:L‘Qm_l + Topm—2 + 1) X oo X GL(.’L'l + zo + 1) X G(.’L‘gm)
GL(xom—1 + Tom—2 + 1) X -+ X GL(z1 + 2o + 1)

GL(zom + Tom—1) X --+ X GL(zo + z1) X G(zp)
GL(zom + xom—1+ 1) X -+ X GL(z2 + 21 + 1) X G(=zp)
GL(zom 3+ Tom-4+ 1) X -+ X GL(z2m_2) X G(zom_1)

(5.3.1)
For each there is a 1-dimensional representation . and x, such that the

spherical irreducible representation L(x»5) = X (x) with infinitesimal char-
acter o is the spherical irreducible subquotient of X, := Indge (xe) and

SawZ Dawg

X, = Indgo (xo) respectively. Precisely each character corresponds to a
string which we write in decreasing order. This corresponds to the action of
S(a) and also means that X, is a quotient of the standard module with the
same parameter. Precisely the strings are

coi(—moi1 + €., z22—€) ... (—Tom +€...,1 —€) (5.3.2)
for X, and
coi(—z2i+ €., 951 —€)...(—zog + €...,1 —¢€) type B,C (5.3.3)
coi(—zoi+ €, 2051 —€) ... (—Tom—2 + 1,...,0)
(—zom-1+1,...,0) type D (5.3.4)
for X,.

Theorem. The relations

[te(m) = Xe] = [ue(m) = L(xo)],  [to(m) : Xo] = [po(m) : L(xo)]
hold for special unipotent parameters.

The proof is in section 6.7.

For a general parameter, the strings defined in section 2 and the above
construction defines parabolic subgroups with Levi components M, x GL(k1) X
-+ X GL(k;) and M, x GL(k1) X --- X GL(k,) and characters on each factor.
The GL(k;) come from the remaining strings in 2.3 We denote the induced
modules by X, and X, as well.

Corollary. The relations
[e(m) + Xe] = [pe(m) : L(x)], [o(m) = Xo] = [wo(m) & L(x)]
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hold in general.

The proof is in section 6.8.
6. HECKE ALGEBRA CALCULATIONS

6.1. The idea of the proof of the results in 5.3 is very simple, but notation
is rather cumbersome. We try to simplify it as much as possible. We work
in the setting of the Hecke algebra, but the results hold for the real groups
as well. We will write GL(k) for the Hecke algebra of type A and G(n) for
the one of type B, C or D as the case may be. We use the term K-type for
a representation of the corresponding Weyl group, and induced modules as
in (6.1.5) are of the form Xp(v) = H®py,, [C, ® triv].

Suppose P = M N is a standard parabolic subgroup with Levi component

GL(k1) X --- x GL(k;) x G(n). (6.1.1)
Let x; be characters for GL(k;). We write
ki—1 ki —1

Xi < (v) == (= + v;). (6.1.2)

R Z T

2 2

This has the property that the representation yx; occurs as a submodule of
X (v;). The action of the Hecke algebra however is

ki —1 ki1

Xi(w) = (w, ( 5 Vs 5+ Vi), w € a. (6.1.3)
In this notation the trivial representation of G(n) corresponds to the string
= {I T e e

We write
Xp(oen (1)) = Indf g x ) [OXi © triv]. (6.1.5)

The subscript indicates that the module is induced from a parabolic sub-
group. The Levi components can be read off from the string. The module
Xp(...(v)...) is a submodule of the standard module with parameter cor-
responding to the strings

ki—1 ki—1
5 Vis-es —
Let w; € W be the shortest Weyl group element which interchanges the

strings (v;) and (v;4+1) in v, and fixes all other entries. The intertwining
operator I, : X(v) — X (w;v) restricts to an intertwining operator

I(I/Z', Vi+1) : XP( .. (Vi)(yi—}-l) [ ) — Xp( .. (Vi+1)(Vi) e ) (617)

This operator is induced from the similar one on GL(k; + ki+1) where M =
GL(k;) x GL(k;+1) is the Levi component of a maximal parabolic subgroup.

vi=(..., +viy...,—n—c+e,...,—1—c+e). (6.1.6)
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Let w; € W be the shortest element which changes v; to —v;, and fixes
all other entries. It induces an intertwining operator

IW) : Xp(... (), () — Xp(... (=11), (). (6.1.8)

In type D the last entry of the resulting string might have to stay — kl; Ly,

This operator is induced from the similar one on G(k; + n) where M =
GL(k;) x G(n) is the Levi component of a maximal parabolic subgroup.

Let 41 be a K-type. We are interested in computing the matrices ,(wo, V)
from section 5. They can be factored into terms of the type (6.1.7) and
(6.1.8). To compute these, the main tool is Frobenius reciprocity. Let
P' = M'N' be the standard parabolic subgroup with Levi component M’

GL(kl) X e+ X GL(kZ + ki+1) X ... in case (617) (619)
GL(k1) x -+ x G(k; +n) in case (6.1.8) (6.1.10)

In the real case, the relevant K-types are identified with the corresponding
Weyl group representations and in the p-adic case they are Weyl group
representations to begin with. We have

Homyy [, X ((v:))] = Homy (nry[ulw ey = triv @ X((v4), (vig1)) @ triv]

in case (6.1.7) (6.1.11)
Homyy [, X ((3))] = Homw (e [plw ey = triv @ X((11), (vn))]
in case (6.1.8) (6.1.12)

The restrictions of relevant K-types to Levi components consists of relevant
K-types of the same kind. We write

B> mip; (6.1.13)

for the K-types p; with multiplicities m; in X ((v;), (viy1)) or X ((v1), (vn))
that figure in formulas (6.1.11) and (6.1.12). In general the multiplicities are
1. The matrix 7, is then computed from the corresponding scalars for the
;. Theorem 5.3 and corollary 5.3 depend heavily on computing the matrices
Ty for p relevant and the intertwining operators I;.

6.2. GL(a) x GL(b). This is the case of I; with i < I. Let n = a + b and
G = GL(n) and P = MN be the standard parabolic subgroup with Levi
component GL(a) x GL(b). The module Xp((v1), (r2)) induced from the
characters corresponding to

a—1 a—1 b—1 b—1 )

(— 9 + v, 9 +V1),(—T+V2,...,T+V2 (6.2.1)

has the following S, structure. Let m := min(a, b) and write u(k,a+b—k)
for the module corresponding to the partition (k,a +b—k), 0 < k < m.
Then

Xp((n), () = €@ wk,a+b—k). (6.2.2)
0<k<m
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Lemma. For 1 < k < m, the intertwining operator I((v1)(v2)) has

1T -4 - (F+m+1)+j
1
2

Tu(k,a+b—k) (@ by V1, v2) = — -
Hlbart=RiE +950) — (5t —1) -

ojch1 1
Proof. The proof is an induction on a, b and k. We omit most details but
give the general idea. Assume k < m, the case k = m is simpler. Embed
Xp((r1), (v2)) into Xp((v'), (v"), (12)) corresponding to the strings
a—1 a—3 a—1 b—1 b—1

9 ‘v, 2 +V1)( +V1)’(_—+V2a"'aT+V2)'

(- 2 2
(6.2.3)

The intertwining operator I(v1,v;) is the restriction of
LV v, V") o LV, V", 1) (6.2.4)

to Xp((v1),(r2)), where Iy interchanges the strings (v"),(v2) and I in-
terchanges (v'), (12) and they each fix the remaining one. The K-type
p(k,n — k) occurs with multiplicity 1 in Xp(v1), (v2)) and with multiplicity
2 in X((v'), (v"), (12)). The restrictions are

plk,n — k) — trive ulk —1,b+ 1 — k) + triv @ u(k,b — k) for Iy
(6.2.5)
p(k,n —k) — p(1,b) + p(0,b+ 1) for I, (6.2.6)

The representation p(k,n — k) has a realization as harmonic polynomials in
S(a) spanned by

II (e =€) (6.2.7)
1<I<k
where (i1,71),-.., (g, j¢) are £ pairs of integers iy # jx, and 1 < iy, jx < n.
We apply the intetwining operator to the S, x Sp-fixed vector
e:= Z o-[(€1 —€qt1) X -+ X (€ — €q1k)]- (6.2.8)

0ESa XSy

The intertwining operator I, has a simple form on the vectors
uw(0,b+1) < (6.2.9)

el == Z o [(61 — €a+1) X X (€k - €a+k)]a
0ESq—1XSpy1

p(1,b) (6.2.10)

€2 = Z o-[(e1 — €at1) X -+ X (€p—1 — €atk—1)(€a — €atk)];
0€8S4-1X%XS1%XSp

transforming according to (6.2.6). They are mapped into scalar multiples
(given by the lemma) of the vectors €}, e, which are invariant under S,_1 %
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Sp % S1, and transform according to triv @ u(0,b+ 1) and triv @ u(1,b). We
choose

!
€1 = €1,

ehi= . o-[(er—€a) XX (61— €ark2)(en — €atp1)]
0ES,_1XSpXS1
(6.2.11)
The intertwining operator I; has a simple form on the vectors invariant
under S,—1 X Sp X S7 transforming according to u(k,n —k — 1) and u(k —
1,n — k). We can choose multiples of

plk—1,n—k) < f1:= (6.2.12)
> ofler—ea) X X (er—1 — €ash—2)(€k — €atr-1)];
0E€Se—1XSpXS1
plk,n —k—1) < fo:= (6.2.13)

Z of(er —€a) X =+ X (g1 — €atk—2)"

UESa_1X55X51
(e +- -+ e1t€ Feapp + -+ €1 — (0 — 2k + 1)e,)].

The fact that f; transforms according to u(k,n—1) follows from (6.2.7). The
fact that fo transforms according to u(k —1,n) is slightly more complicated.
The product [J(e1 — €3) X -+ X (€g—1 — €q4+k—2) transforms according to
u(k — 1,k — 1) under Sox_s. The vector (ex + -+ + €4—1 + €4 + €ark +
-+ 4+ €p—1 — (n — 2k + 1)¢,) is invariant under the S,,_or_1 acting on the
coordinates €g, ... €q, €4 ik, - -, €n—1. Since p(k,n —k — 1) does not have any
vectors transforming this way, the product inside the sum in (6.2.13) must
transform according to pu(k —1,n — k). The average under o is nonzero. The
operator I, maps f1 and f; into multiples (using the induction hypothesis) of
the vectors f{, f4 which are the Spx S,_1 XS] invariant vectors transforming
according to pu(k,n — 1) and pu(k — 1,n — k). The composition I; o Iy maps
e into a multiple of

el . Z o- [(61 _ Eb—}—l) X o0 X (Ek — 6b—|—k)]' (6214)
0ESEXSe

The multiple is computable by using the induction hypothesis and the ex-
pression of

e in terms of e, e,
e}, €, in terms of f1, fo, and
e’ in terms of f], f5.
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For the case k = 1, we get the following formulas.
e="b(e1+---+¢€) —aleg+1 + -+ €n),
er=(0b+1)(es 4+ +e€—1)—(a—1)(ea + -+ €n),
€2 = beg — (€g+1 + -+ + €n),
fi=bles+---+e-1)—(a—1)(eg + -+ €n_1),
fo=(a+ - +e-1)+(cat - +en1)—(n—1ey,

e = —ales +---+e&) —blepr1 + - +en), (6.2.15)
er=0+1)(a++e1)—(a—1(eat+-+en),
ey = —(ea+ -+ €n_1) + blen),
1= —(a+1)(ex+--+e) +blepys + - +en 1),
s =(e1+--+e)+ (1 +---+e1) = (n—1ep.
The required formulas are
a—1 n
CThr1? T b1
eﬁznT_LlflnLZ:ifm
(6.2.16)
ey = ! fi— b f2,
n—1 n—1
n b
¢ =t
O

6.3. GL(k) x G(n). In the next two sections we prove theorem 5.3 in the
case of a parabolic subgroup with Levi component GL(k) x G(n) for the
induced module

Xp((v)) = Ind$E[x, ® triv). (6.3.1)
The parameter corresponding to the character y, ® triv is
k-1 k—1
(—T—I—V,...,T+V)(—n—|—1—c+e,...,—c+e). (6.3.2)

Recall that € = 0 when the group is type B, ¢ = 1 for type D. Because of
sections 5.1-5.3 we deal with r,. Then

I(w): Xp(v) — Xp(-v),  Xp(w) =) V. V)"™M, (6.3.3)
and I(v) gives rise to an operator
re(v) : (V)W) 5 ()W), (6.3.4)

We will compute 7, () by induction on k. In this case the relevant K-types
have multiplicity < 1 so I(v) is a scalar. By embedding Xp into a bigger
induced module we will decompose 7, (v) according to a reduced decompo-
sition, compute the individual terms and then restrict their composition to
the W (M) fixed vectors of V*.
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6.4. We start with the special case Kk = 1 when the maximal parabolic
subgroup P has Levi component M = GL(1) x G(n) C G(n+1). In type D
we assume 71 > 1. The relevant K-types with multiplicities are
[(n+1) x(0)] + [(1,n) x (0)] + [(n) x (1)]. (6.4.1)
The operator 7,(v) can be written as a product
71,20+ 0Ty i1 OTpt1 OTpptl O - OT12 (6.4.2)

where r; ; is the r, corresponding to the root €¢; — ¢; and 7,1 is the r,
corresponding to €,41. I(v) is a rational function f(o,v) on each K-type o,
satisfying the relation f(o,—v)f(o,v) = 1.

Proposition. The function f(o,v) equals

pre(1,m) = (n) x (1) #o(1,m) = (1,n) x (0)
B ctn—v ctn—v  ctv

c+n+v ct+n+v  c—v

(6.4.3)

C n+l—v _n4l—v

n+1+v n+1+v

— —vl—
D % iy iy

In this table the type refers to the group (not the Hecke algebra) and type C
refers to the split case, i.e. ¢ = 1.

Proof. We do an induction on n.

The reflection representation (n) x (1) has dimension 7 + 1 and the usual
basis {¢;}. The W (M) fixed vector is €;. The representation (1,n) x (0) has
a basis €f — ¢ with the symmetric square action. The W (M) fixed vector
ise? — L3+ +e2 ).

The case n = 0 for type B is clear; the intertwining operator is 1 on
o = triv and ;‘_—I’j on ue = sgn. In type D and n = 1, the middle K-type in
(6.4.1) decomposes further

[2) x (0)] + [(1) x (1] + [(1) x (1)rr] +[(0) x (2)]. (6.4.4)
The representations [(1) x (1)r,r7] are 1-dimensional with bases €; £ €. The
result is clear in this case as well.

We now do the induction step. In the case u., embed Xp in the induced
module from the characters corresponding to

W) (-n+1-¢)(-n+2—-c¢,...,—0). (6.4.5)

Write P’ = M'N'’ for the standard parabolic subgroup corresponding to
these three strings. Then the intertwining operator I : Xp((v)) — Xp((—v))
is the restriction of

L(-n+1—¢,—v)oIy(v)oI1(v,—n+1—c). (6.4.6)
In terms of the r, we get
(re)1(v,—n+1—=2c)o(ry)2(v) o (rs)1(—n+ 1 — ¢, —v). (6.4.7)
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We need to compute the r,. For this we need to compute some restrictions
of pe(1,n) and on p,(1,n). We have

IndW(B"+1)[(n —1)x0)]=Mm+1)x(0)+2 (n) x (1) + (1,n) x (0)

W(Bp—1)
+1n—1)x 1)+ (n—1)x (2) +(n—1) x (1,1), (a)
Indy gtV [(m) x (0)] = (n+1) x (0) + (n) x (1) (b)
(6.4.8)
Indyy 3 5 )[2) @ (n— 1) x (0)] = (n+1) x (0) + (1,n) x (0)+
+(2,n) X (0) + (n) x (1) + (L,n —1) x (1) + (n — 1) x (2 (c)
Indyy i) g 0[(1,1) @ (n— 1) x (0)] = (1,n) x (0) + (1,1,m) x (0)+
(n) x (1) + (1,n) x (1) + (n — 1) x (1,1) ()

Thus p1¢(1,n) occurs with multiplicity 2 in Xps. The W (M) fixed vectors are
the linear span of €1, €. The intertwining operators I; and I are induced
from maximal parabolic subgroups whose Levi components we label M;
and Ms. Then € + €3 transforms like ¢riv @ triv under W (M) and €1 — e
transforms like sgn ® triv. The vector €; is fixed under W(B,,) (which
corresponds to M3) and the vector €5 is fixed under W (B,,_1) and transforms
like 115(1,n) under W (B,,). The matrix r, is, according to (6.4.7),

1 v—n+l—c 1 0 1 v+e+n—1
TFv—c— 2tv—n—
T ||y ] R 0| (649)
1+v—n+l—c 24+v—n—c c+n—14v ctr+n ct+1l+v+n
ctn—v

So the vector €; is mapped into €1 as claimed. The calculation for

type D is analogous.

ct+n+v

For u, we apply a similar method. Let P’ be the parabolic subgroup with
Levi component GL(1) x GL(n). In type B the intertwining operator has
a decomposition analogous to (6.4.6). In this case the operator Iy is the
identity because in the representation pu, the element ¢, corresponding to
the short simple root acts by 1. For type D let

. !
o; =€ — €411, 1<1i<n, O = € + €py1.

Let GL(n + 1) have simple roots «;,7 < n and denote by GL'(n + 1) the
Levi component with simple roots a;, ¢ < n — 1 and «f,. The intertwining
operator analogous to (6.4.6) decomposes into I; o Ij. Both operators are
induced from Levi components of type A and so the result of the proposition
is a consequence of section (6.3) and the fact that the K-types occur with
multiplicity one. ]

6.5. In this section we consider (6.3.2) for £ > 1, n > 1 and the K-types
pe(m,n +k —m) for 0 < m < k which occur with multiplicity 1.
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Proposition. Assume 0 = pe(m,n + k —m). In type B, r,(v) equals

[[ et (65.1)
k—1 . e
0<i<m-1 n+c+ (5= +v)—j
In type D, r,(v) equals
1 % o5 tv) - (6.5.2)

o<igmo1 M (5T F V) =

Proof. The case k = 1 was done in section 6.4 so we only need to do the
induction step. We factor the intertwining operator as follows. The module
Xp(v) is contained in the induced module

Y (v) = Indg[xy ® Xi1,, ® triv]
where @ has Levi component GL(k — 1) x GL(1) x G(n). This corresponds
to breaking up the parameter into strings
k—1 k—3 k-1
((_T e T —I—l/)(T +v)(—n+1—c+e,...,—c+e€) (6.5.3)

The intertwining operator factors
I = Ié o 112 (0] IQ (654)

where

e I, changes (451 +v) to (—%5 — v) and is induced from the corre-
sponding operator coming from GL(1) x G(n) C G(n + 1),

e [i9 interchanges (—% + u,...,% + v) with (—% —v) and is
induced from GL(k — 1) x GL(1) C GL(k),
o I changes (52 +v,..., 553 +v) to (552 —v,..., 5L —v) and

is induced from GL(k — 1) x G(n) C G(k +n).

The K-types that matter in the restrictions are

triv @ pe(l,m + k — 1) + triv @ pe(0,n + k)

for GL(1) x G(n+ k — 1), (6.5.5)
(k) @ triv + (1,k — 1) @ triv

for GL(k) x G(n), (6.5.6)
triv ® pe(m —1,n + k —m) + triv® pe(m,n +k —1—m)

for GL(k — 1) x G(n +1). (6.5.7)

The K-type pe(m,n+k—m) =2 A™pu.(1,n+k—1). It occurs with multiplicity
2inY for 0 < m < min(k,n) and multiplicity 1 for k¥ = min(k,n). We will
write out an explicit basis for the invariant S; x S X W(B,,) vectors. The
intertwining operators I, I} in (6.5.4) are known by induction and I3 is
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computed in lemma 6.2. Then formula (6.5.2) comes down to a computation
with 2 x 2 matrices as before. Let

e:= mg%;ka- [e1 A A€l (6.5.8)

This is the Sy x W (B,,) fixed vector of pe(m,n + k —m). It decomposes

as
e=eoter=fotfi (6.5.9)
where
1 > [e1 A Aem]
€y = n — ‘ o-l€eg . €ml,
ml(k — 1 —m)! s s
1
D= m— 1)k — m)! Y. oclanAema] Ae,
T (6.5.10)
1 5.
fo:m!(k:—l—m)! Z o-leg A Aemyl,
0'651><Sk,1
1
h= Gy 2. ahelen Al
0ES1 XSK—1
Let also
N/ 1 ZU‘[CI/\"'/\G]
0= "0 — | _ | m]s
(m — 1)k —m)! =
b=, o lanAanaAlem—en), (6.5.11)
GESk_lxsl
6’1/: Z o-[(—€1+ emt1) Nea A+ A€mit]-
O'ESIXSk_l
Then
k_m 12 m / m ’ m '
ey = ey + e, el = —ep — —¢€,
* ’ ko & (6.5.12)
k—m
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We now compute the action of the intertwining operators. The following
relations hold:

n+c— (5L +v)

I>(eg) = ep, Ir(e1) = e1,
2(0) 0 2(e1) n+c+(%—|—u) '
2v—1
La(eg) =eo,  Tizler) = g el
n—f—c—(—ﬂ—f—l/)—j (6.5.13)
Lif)= ]] : fo,

0<j<m—2 n+c+ (52 +v) —j

H ntc— (=5 +v)—j
n+ct+ (52 +v)—j

L(f1) =

fi
0<j<m—1

Then

14
12(60 + 61) =eg + ;61. (6514)
1%

Substituting ef, €], we get
k—m mn+c— (52 +v)

[ me n+c— (5t +v)
k kEn+ct+ (5L +v)

leg Z[ — ” le}. (6.5.15)

Applying I5 to this has the effect that e, is sent to e and the term in €]
is multiplied by % and €] is replaced by e]. Substituting the formulas
for ej and e in terms of fy, fi, and applying I5, we get the claim of the
proposition. O

6.6. We now treat the case o = p,(m,n+k —m). We assume n > 0 or else
these K-types do not occur in the induced module.

Proposition. For type B, v, equals
[[ o3)-0-0+5 (n-0- (vt

6.6.1

A UEEN 9o a-a-(v-Eh-; Y
For type D, r, equals

[ Ui+ Cm-rrihes

0<j<m—1 w+EH) —(—n)-j O —-(—v-51)—j

Proof. Consider type B. We decompose the intertwining operator I(r) that
takes Xp(v) in (6.3.1) to Xp(—v) into
Iolol (6.6.3)
where
e I, interchanges (—%—I—I/, ... %—I—I/) with (—n+1—c+e,...,—c+e)
and so is induced from the corresponding operator on GL(n + k),

e I, interchanges v to —v in (—% +uv,... % +v), so is induced from
the corresponding operator on G(n),
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e I interchanges (—n+1—c+e,..., —c+e) with (=552 v, ... 51 40)
and so is induced from the corresponding operator on GL(n + k).
The only K-type of the form triv ® u that occurs in the restriction of y, to
W (Ag_1) x W(B,,) is triv ® triv. Thus the operator I, is the identity. Then
the result follows from section 6.3.

Now consider type D. If k is even the argument for type B carries over
word for word. If k is odd, the same decomposition as (6.6.3) holds except
that I is replaced by the operator that interchanges the strings

E—1 k-1 E—1 k-1
(O)(—T—l-u,...,T-i-u) — (0)( 5 Vyeooy 3 v) (6.6.4)
and fixes all other entries. It is enough to check that the operator (6.6.4)
is the identity on any p,. It is induced from an operator on G(k + 1) and
decomposes further into Iy = I{y o I} o I' o I15 where
e I' changes (— 51 v, ... Bl 4y to (B —y, B3y L 4y
and changes GL(k) to GL'(k),

e I, interchanges (0) and (—%1 +v,..., 551 + ),

e I} changes (52 + 1)(0) to (—%5% — v)(0) and changes GL'(k) to
GL(k),

e I!, interchanges (—%5% —v,..., 51 —v) and (0).

The operator I’ is the identity on any p, because any triv ® u occuring in
its restriction to W (A,_1) x G(k + 1) must have y = triv. Then I is also
the identity on any K-type u, because such a K-type only contains triv ® u
in its restriction to GL(n — 1) x G(k + 1) with p of the form p,(1,k) or
to(0, k+1). The operator is the identity on p,(0,k+1). The K-type po(1, k)
is realized as the natural representation on the span of e? — e?. The fact
that I is the identity follows from a direct calculation. Using 6.3 we then
conclude that I, o I12 = Id on any u,. O

6.7. Proof of theorem 5.3. We use the results in the previous sections to
prove the theorem in general. We give the details in the case of the group
of type B and p.. Thus the Hecke algebra is type C, and ¢ = 1. There are
no significant changes in the proof for the other cases. Recall the notation
from section 2.3. Write

v=(Tom — 1/2,. .., mom — 1/2,...,1/2,...,1/2)

We factor the long intertwining operator so that
X(v) 5 Xo(v) 22 X(—v). (6.7.1)

The claim will follow if the decomposition has the property that the oper-
ator Iy is onto and I» is an isomorphism when restricted to the u, isotypic
component.

The operator I; is a composition of several operators. First take the long
intertwining operator induced from the Levi component GL(n),

X (@om —1/2, ey 1/2) —> X(1/2,..., Tom — 1/2), (6.7.2)
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corresponding to the shortest Weyl group element that permutes the en-
tries of the parameter form increasing order to decreasing order. The im-
age is the induced from the corresponding irreducible spherical module
L(1/2,...,29m — 1/2) on GL(n). In turn this is induced irreducible from
1-dimensional spherical characters on a GL(zg) X --- X GL(z2y,) Levi com-
ponent corresponding to the strings

(1/2,...,00 —1/2) ... (1/2,... ,20m — 1/2)
or any permutation thereof. This is well known by results of Bernstein-

Zelevinski in the p-adic case, [V1] for the real case.
Compose with the intertwining operator

X(oo (1/2 . Tom — 1/2)) — X (... (—Tom — 1/2,...,-1/2)), (6.7.3)

all other entries unchanged. This intertwining operator is induced from the
standard long intertwining operator on G(x2,,) which has image equal to
the trivial representation. The image is an induced module from characters
on GL(xy) X -+ X GL(x21m—1) X G(x2m,)- Now compose with the intertwining
operator

X(...(1/2,...,m9m—1)(—z2m — 1/2,...,—-1/2)) (6.7.4)

— X(... (—zom—1,---,—1/2)(—zom — 1/2,...,—-1/2))
(again all other entries unchanged). This is induced from the corresponding
operator on GL(zg) X - - X G(Zom+T2m—1), and by section (6.2) its restriction

of (6.7.4) to the p, isotypic component is an isomorphism. Now compose
this operator with the one corresponding to

X(...(1/2,...,z9m—2)(—zo2m—1 +1/2,...,1/2)...) (6.7.5)
— X( (—.Tgm_l,...,.’L‘Qm_Q — 1/2))
with all other entries unchanged. This is induced from GL(zp) X --- X

GL(z2m—2 + Tom—1) X G(x2y,) and the image is the representation induced
from the character corresponding to the string

(—zom—1—1/2,1/2,... ,x29m—2) on GL(xom—2 + Tom—1).
Now compose further with the intertwining operator
X(...(—zom-1+1/2),...,20m—2 — 1/2)(—z2m, — 1/2,...,-1/2)) (6.7.6)
— X((—zom-1+1/2,...,09m—2—1/2) ... (—zom — 1/2,...,—-1/2))

from the representation induced from

GL(zg) X -+- X GL(z9mm—3) X GL(zom—2 + Tom—1) X G(z2m)
to the induced from

GL(zom—2 + Tam—1) X GL(xg) X -+ X GL(x2m—3) X G(xam)-

By lemma 6.2, this intertwining operator is an isomorphism on any pu.
isotypic component. In fact, because the strings are nested, the results
mentioned earlier for GL(n) imply that the induced modules are isomorphic.
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We have constructed a composition of intertwining operators from the
standard module X (v) where the coordinates of v are positive and in de-
creasing order (i.e. dominant) to a module induced from

GL(z2m—2 + Tom—-1) X GL(z0) X - -+ X GL(z2m-3) X G(z2m)
corresponding to the strings
((—.’L‘mel + ]_/2, e ,$2m,2)(1/2, ceey, X0 — 1/2), een
oo (—zom +1/2,...,-1/2))

so that the restriction to any . isotypic component is onto. We can repeat
the procedure with xoy, 4,22, 3 and so on to get an intertwining operator
from X (v) to the induced from

GL(x2m—1 + Tom—2) X -+ x GL(z1 4+ x0) X G(22m)
corresponding to the strings
((_IQ’mfl + 1/2a s 7‘T2m72) s (—.’L‘]_ + 1/27 <L — 1/2)7
(—zom +1/2,...,-1/2)).

Since by lemma 6.2 the intetwining operators permuting the G L-factors are
isomorphisms, we get I; with the claimed properties.

We now deal with I5. Counsider the group G(z1 + zg + z9,,) and P the
standard parabolic subgroup with Levi component M = GL(z1 + zy) X
G(z2m). Let P' be the standard parabolic subgroup with Levi component
M' = GL(z1) x GL(xg) x G(z2y,)- Let

n=(—z1+1/2,... 30— 1/2,—zom + 1/2,...,-1/2),

X > (=1 +1/2,... w0 — 1/2). (6:7.7)
The induced module
Xp = Ind$;[xy ® triv] (6.7.8)
corresponding to the strings
(—z1+1/2,...,20 — 1/2)(—z2m + 1/2,...,-1/2). (6.7.9)
is a submodule of
Xpr(n',n") = IndSy Xy ® Xy ® triv] (6.7.10)

corresponding to the strings
(—z1+1/2,...,-1/2)(1/2, ..., m0 — 1/2)(—zom + 1/2,...,—1/2). (6.7.11)

which in turn is a submodule of X (7). Now consider the intertwining oper-
ator

I(n',n") « Xpi(',n") — Xpi (', —1"). (6.7.12)



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 43

It is an isomorphism on the y, isotypic components because it is induced
from an intertwining operator on G(z¢ + z9y,) by formula (6.5.1). Induc-
ing up to the modules on the original group G(n), we find an intertwining
operator from an induced module from

GL(:L‘Qm_l + .Z‘Qm_Q) X -+ X GL(:El + 370) X G(H?Qm)
corresponding to the string
(—:EQm_l + 1/2, ey, Tom—2 — 1/2) . (—.121 + 1/2, ..
cey o — 1/2)(—zom + 1/2,...,1/2)
to the module induced from
GL(-'L'Zm—l =+ .’I,'Qm_g) X ee+ X GL(.Tl) X GL(.’I,'()) X G(.’I)Qm)
corresponding to the string
(—.’I,'Qm_l + 1/2, vy TOm—2 — 1/2) . (—.Tl + 1/2, ceey —1/2) (6713)
(—zo+1/2,...,1/2)(—zom +1/2,...,1/2)
which is injective on the y. isotypic component. Since the strings in (6.7.13)
are nested, the intertwining operators that permute the GL factors are iso-
morphisms. So we permute GL(xy) and GL(z1) with GL(z3 + z4), and the
other GL(z2;—2 + x2;—1) and repeat the argument we gave for zy, z1 with

Z2, x3 and so on. We end up with an intertwining operator to the induced
module from

GL(z1) x GL(xzg) X -+ X GL(z2mm—1) X GL(x21—2) X G(zom,) (6.7.14)
corresponding to the strings
(—z1+1/2,...,1/2) (=20 + 1/2),...,-1/2)... (6.7.15)
(—zom—1+1/2,...,=1/2)(—zom—2 + 1/2,...,-1/2)(—22m + 1/2,...,1/2)

which is injective on the p, isotypic components. Finally, by properties of
intertwining operators on GL(n) already mentioned, this last module maps
injectively to X (—v).

This completes the proof for this case. The case of y, is similar and we
omit the details.

6.8. We now describe the modifications needed to prove corollary 5.3 in the
case when the parameter is formed of half-integers (still type B and details
for pe only) but not necessarily unipotent. The proof is no more difficult.
We factor the long intertwining operator

X(v) 25 X, (v) 2 X(~v) (6.8.1)

such that I; is onto all the pu, isotypic component and Iy is into. The
module X, is defined by the strings specified in 2.5. We describe it again
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when we define 1. So recall the notation for type B in section 2.5. Denote
the coordinates of v as

(R—1/,...,R—1/2,...,r —1/2,...,r—1/2), R>r>0. (6.8.2)
The long intertwining operator for GL(n) induces an interwining operator
X(v) — X)) (6.8.3)

where v/ is as in (2.4.1); the entries are the same as for v but in increasing

order. The image of this operator is the module 1 ndgg&

the parameter up into nested strings so that r; < r;41 < Rip1 < R;
(r1—1/2,...,R1 —1/2) ... (rpy — 1/2,..., Ry, — 1/2). (6.8.4)

Then Lgr(v) is induced irreducible from the characters corresponding to
these strings on GL(R; —r1+1) X - -+ X GL(Ry — r, + 1) and so is the image
of the operator in (6.8.3). Reorder the strings so that the ones starting with
1/2’s are last and otherwise they are in increasing length from left to right.
Call this new parameter v and label its strings

(a1 —1/2,...,A1 —1/2)...(0,1—1/2,...,Al—1/2)
(1/2,... 00— 1/2) ... (1/2, ..., Zom — 1/2). (6.8.5)

yLarn) (v). Break

Let
M" = GL(A1 —ai + 1) X ... GL(A[ —a; + 1) X GL(.’E()) X ... GL(.Z‘Qm),

and denote by n; the character corresponding to the string (a;—1/2,..., A;—
1/2) and by x; the character corresponding to (1/2,...,2;—1/2). Composing
(6.8.3) with intertwining operators permuting the GL factors we get an
intertwining operator

X(v) — Ind§pm @ @ ®x0® *+ ® Xom) (6.8.6)
which is onto when restricted to the u, isotypic components. Let
M, :=GL(A; —a1 +1) x--- X GL(A; —a; + 1)x
GL(Zom-1 + Tom-—2) X -+ X GL(z1 + x9) X G(x2m), (6.8.7)
and let X.(v) be the induced module from M, corresponding to the strings
(a1 —1/2,...,A1 —1/2)...(a; — 1/2,..., A, — 1/2)
(—zom—1 +1/2,...,20m—2 —1/2)...

(—z1 4+ /12,...,20 — 1/2)(—zom + 1/2,...,-1/2). (6.8.8)
The proof of theorem 5.3 gives an operator
Indpy[m @ - @M@ X0 ® -+ ® xam] — Xe(v) (6.8.9)

which is onto when restricted to the p, isotypic component. The composition
of (6.8.6) with (6.8.9) is the operator

IL: X(v) — Xc(v). (6.8.10)
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We now describe I5. The operator from X, (v) to the induced module from
Mé = GL(Al — a1 + 1) X+ X GL(Al_l —aj—1 + 1)X

GL(z2m—1 + Tom—2) X --+ X GL(z1 + z9) X GL(A; — a; + 1) X G(z2m)
(6.8.11)

which permutes the GL factors and the strings is an isomorphism on the p,
isotypic components by lemma 6.2. The intertwining operator that changes
the string

(al—1/2,...,Al—1/2) to (—Al—|—1/2,...,—al—1/2) (6812)

is an isomorphism on the e isotypic component by formula (6.5.1). This
uses the fact that a¢; > 1. Then any intertwining operator that interchanges
GL factors and their strings is an isomorphism on the y. component by
lemma 5.3. Let X.(—v) be the module induced from M, where all the
strings on the GL’s are reversed as in (6.8.12). We have constructed an
intertwining operator

Xe(v) — Xe(—v) (6.8.13)
which is an isomorphim on the p, isotypic components. The fact that the
operator

Xe(—v) — X(-v) (6.8.14)
is an isomorphism on the u. isotypic component is a consequence of prop-
erties of the intertwining operators on groups of type A. The operator I is
the composition of (6.8.13) and (6.8.14). The proof follows.

7. THE INDUCTION

To check that condition [B] is necessary, we will do an induction on the
rank of the Lie algebra g and downward on the nilpotent orbit O (attached
to the parameter) ordered by inclusion in closures. Assume ¢ = 1.

7.1. Consider the representation corresponding to
(a—e+v,...,A—et+v)(-n+e...,—14+¢), |a|]<A 0<v<l, (7.1.1)

where a, A € Z, ¢ = 1/2 for type B, € = 0 for type C and € = 1 for type
D. The second string represents the infinitesimal character corresponding to
the principal nilpotent Oy.

Proposition. The form on L(x) corresponding to (7.1.1) is negative on the
following K -type:
(1) If n < a then the form is negative on (n + A —a) x (1).
(2) If a < n < A then the form is negative on (A —1) X (n —a+2).
(3) If A < n and a — 2¢ > 0 then the form is negative on (1,n+ A —
a) x (0).
(4) If A < n and a — 2¢ < 0 then the form is negative on (—a + 1,n +
A) x (0).

Proof. This is a corollary of the results in section 6.2. O
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We will say a spherical irreducible module is a-unitary if the form is
positive on the K-types p. and p,. Similarly, for an induced module, a-
irreducible means that all K-types of the form p. K-types occur with the
same multiplicity in X, as in L() or that all K-types of the form u, occur
with full mulitplicity in X, and L(x).

7.2. Initial Step. Consider the case of a parameter corresponding to a ]
which has a unipotent part corresponding to an even nilpotent orbit Oy and
a single string. We write the string as

(@a—¢...,A—¢€¢)+v(l,...,1), la| <A, 0<v<l1. (7.2.1)

We do the case of type C only, the others are similar. The nilpotent orbit
Oy corresponds to the partition (2zg + 1,..., 229, + 1) and the parameter
has strings

(1,...1170)(0,1,...,.’1,'1)...(1,...,.’L‘2m).

The partition of O is (2z9+1,...,2z2, +1,A—a+1,A—a+1). We may as
well deform v so that v = 1/2, Since no reducibility occurs, the signatures
of all K-types stay unchanged. We want to show that if A +a > 0, or if
A+ a = 0 and there is no z; = A, then L(x) is not unitary. Since we do
a downward induction on the rank of g and downward on © the first case
is when O is maximal. This is the principal nilpotent (so m = 0),and the
claim follows from proposition 7.1. So we assume that m is strictly greater
than 0.

Assume x2; < A < x2;11. We will show that the form is negative on a
K-type (k). If there is any pair z9; = x9;41, the module X, is unitarily
induced from G(n —2z9; — 1) x GL(2z9; + 1) and all K-types p.(k) have the
same multiplicity in L(x) as in X,. We can remove the string corresponding
to (zgjx9j41) in X, as explained in section 3. By induction on rank we
are done. Similarly we can remove any pair (zg;,2;41) such that either
z2j4+1 < |a| or A < zo; as follows. Deform the string

Zoj + Toj41 + 1 Toj + Toj+1 + 1
5 yeens 5 )
No a-reduciblility occurs, so the multiplicities and signatures in X, and
L(x) do not change. The new X, is unitarily induced from triv ® X. on
GL(x2j + 22j41) X G(n — 9 — 241 — 1) and we can remove the string
corresponding to (z2;22;41). The induction hypothesis applies to X7.

(—=Z2j+1,---,T25) to (— (7.2.2)

When A+a = 0, the above argument implies that it is enough to consider
the case

@ — (180,3,‘1,.1‘2), Ty < M <z < 9. (7.2.3)
We reduce to (7.2.3) when A +a > 0 as well. By the above arguments,

we may as well assume m = 2 + 2. Suppose there is a pair (225, T2j4+1)
such that |a| < 2541, and j # i. The assumption is that zo; < A < 2941
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50 T2j+1 < x2; < A. We can deform the character in the parameter of X,
corresponding to (zg;, T2;41) to

(_$2j+1 +v,..., 29 + I/) or (—.’L‘Qj +v,...,T2541 + V). (724)

The multiplicities of the p.(k) in X, and L(x) are equal until the parameter
reaches v. So if the signature on some p. (k) isotypic component is indefinite,
the signature has to be indefinite on the original L(x). But the induction
hypothesis applies to at least one of these parameters, and implies that the
form is indefinite on a pe(k). For example, if a < 0 use the first deformation.
The strings for the new L(x) are

(—z2j41+v,...,A+V) (a+v,...,z95 +v).

Then A + z2j41 > 0. Deform v in the second string to zero. The new
nilpotent has O’ with partition

(oo2lal+1,..., 20001 +1,..., A+ 2o + LA+ 29541+ 1,...)
which contains @ in its closure. By induction the form is indefinite on a
K-type pe (k).

We have reduced to case (7.2.3). We now reduce further to the case
O +— (z0), zo < A. (7.2.5)

which is the initial step. Consider the module I(v') for 0 < v/ < 1 corre-
sponding to the strings

(—x1+V,. .,z + V) a+v,...,A+v)(—x0,...,—1). (7.2.6)
i.e. induced from
GL(a+ A+ 1) x GL(z1 + z2) X G(=zp). (7.2.7)

Consider the irreducible spherical module in the induced from just GL(a +
A+ 1) x G(zg). By section 7.1, the form is, negative on ue(1) if z¢o < a,
negative on pe(xg + 1 —a) if a < x¢. In the second case the form is positive
onall pe(zp+1—a—r)forl<r<n+l—a.Soletrg:=1lorzg+1—a
depending on these two cases. The multiplicity formulas from section 6.2
imply that

T2 — I

[pe(ro) = I(W)] = lpe(ro) : L(x)] for 0<s/ < —F—.

Thus we can deform v to 2252, where I(v') is unitarily induced, and con-
clude that the form on L(x) is negative on p.(rg).

Assume x3;_7 < A < xg;. In this case we can do the same arguments using
X, and p,. We omit the details.
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7.3. Induction step. We will show that an a-unitary spherical module has
to satisfy property (B) by induction on the rank of g and downward on the
nilpotent orbits ordered by inclusions in closures in the dual group. We treat
the case of the group of type C only.

The case of a single string was done in section 6.2; so assume there is
more than one string. The spherical representation corresponding to v is
induced irreducible from a

LO®XU1®"'®XW
where L is special unipotent. There are at least two strings, label them
(f+vi,...,F +11), (e+vo,....,E+ ). (7.3.1)

Suppose the first string does not satisfy (B). This means that F + f > 0
or F + f < —2. We treat the case F + f < —2 (so f < —2 because of the
convention that |f| < F'). The other case is similar.

The strategy is to deform v until the first time the induced module be-
comes reducible. The nilpotent orbit attached to the spherical subquotient
is larger so the induction hypothesis applies to the spherical subquotient.
Assume the reducibility occurs at a vy € Z. There are several possibilities.
Supopse the string corresponding to v5 combines with the parameter of Ly
to form a new parameter corresponding to a strictly larger nilpotent. The
string corresponding to v stays unchanged, and does not satisfy condition
(B). This contradicts the induction hypothesis. The same argument ap-
plies if no a-reducibility occurs while v can be deformed to a value where
the parameter is unitarily induced. We remove a string and the induction
hypothesis applies because the rank of the algebra is strictly lower.

Suppose v, can be deformed to oo without a-reducibility occuring. Then
we can deform v, to be very large compared to all other coordinates, and
deform one of the remaining strings of X, so that the parameter becomes
unitarily induced. The induction hypothesis implies that the form is negative

on fi(1).

Assume that the reducibility occurs at a vy ¢ Z. When the representation
becomes reducible, the string corresponding to v combines with another
string to give a parameter corresponding to a strictly larger nilpotent orbit.
If the string corresponding to v; is not involved, we get a contradiction to
the induction hypothesis. We are reduced to the case when the reducibility
involves the first string in (7.3.1). We can deform v in two directions. One
of them gives reducibility when v5 is deformed to 1. The strings of the new
L(x) are

(f+vi,...,E+11), (e+vy,....,F+1)if f<e<F<E,
(7.3.2)
(f+V1,...,E+1/1) ifF=e—1.
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(There is also the case E = f — 1, but then e + £ < —2 as well and we
can interchange the labeling of the strings). In both cases the induction
hypothesis implies —2 < f + E < 0 (so E > 0). We show that e < 0. In the
first case —2 < e+ F < 0 as well, so e < 0. If in the second case e > 0, then
F =e—12>0, and the second string does not satisfy (B) either. If 11 < v
as well, then deform 1y N\, 0. The induced representations has to become
reducible and the reducibility does not involve the string with v5. But since
e > 0 the second string in (7.3.1) does not satisfy (B), contradicting the
induction hypothesis. Thus consider the case vo < v1. Deform v; 1. The
first reducibility point has to be at v1 = 1 — v». The strings of the new L(x)
are

(e+vo,....,.E+19), (—e+uvo,...,—f—1+uw). (7.3.3)

Our assumptions are f + F = f + e — 1 < —2, so the induction hypothesis
implies —2 < —e+ E<0and —2< E — f —1 <0, a contradiction.

Thus e < 0. If 15 < vq, deform v5 N\ 0. The resulting parameter does not
satisfy the induction hypothesis. So e < 0, v1 < vo must hold in all cases.
Suppose € = 0. If e < F' then move v; Y\ 0. The induction hypothesis implies
—2<e+ E <0so £ =0. But in this case e < F' < E, a contradiction. If
on the other hand F = e — 1 = —1, the strings are

(f+vi,...,—1+11), 0+ vo,...,E+ o). (7.3.4)

Deform v upward. The induced module cannot be reducible at 5 =1 — 14
or at vp = 1. If it were reducible, the induction hypothesis applies but
the string with v; cannot be involved and does not satisfy (B). The same
argument applies at the next possible reducibility point 15 = 1 + vy; the
strings are

(f+vi,...,—1+1v1), (14+uv1,...,E+uv1). (7.3.5)

We conclude that we can deform v, to oo and no reducibility can occur.
So make vy very large. Then deform 1y 1 in the first string so that the
resulting spherical module is earlier in the induction. This contradicts the
induction hypothesis since the string with v, does not satisfy (B).

Thus we are reduced to the case when we may assume that e < 0, v1 < vg
and the induced module has to be reducible at v = 1 — v;. The strings of
L(x) become

(f+v,--., F+11) (—E—-1+4v,...,—e—1+41y). (7.3.6)
The induction hypothesis implies
—-2<f-e—1<0, —2<F-FE-1<0, or
(7.3.7)

—2<f-e—-1<0, F=-E-2

In the first case we get f = —2,F = —1 and e = —1, F = (. Deforming
v/ 1/2 we find a unitarily induced a-irreducible module from a similar
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one on a proper Levi component which contradicts the induction hypothesis.
In the second case we find f = F = —FE — 2. The same argument applies.

8. REAL NILPOTENT ORBITS

In this section we review some well known results for real nilpotent orbits.
Some additional details and references can be found in [CM].

8.1. Fix a real form gy of a complex semisimple Lie algebra g. Let 6 be
the complexification of the Cartan involution of gy, and write — for the
conjugation. Let G be the adjoint group with Lie algebra g, and let

g==t+s, go = £ + %o (8.1.1)

be the Cartan decomposition. Write K C G for the subgroup corresponding
to €, and Gy and K for the real Lie groups corresponding to go and .
Let e € g be a nilpotent element.

Theorem (Jacobson-Morozov). (1) There is a one to one correspon-
dence between G-orbits of nilpotent elements and G-orbits of Lie
triples {e, h, f} i.e. elements satisfying

[h,e] =2e,  [h,fl=-2f, [e,fl=h.
This correspondence is realized by completing every nilpotent element
e to a Lie triple.
(2) Two Lie triples {e, h, f} and {e', b, f'} are conjugate if and only
if the elements h and h' are conjugate.

8.2. Suppose e € gg is nilpotent. Then one can still complete it to a Lie
triple e, h, f € go. Such a Lie triple is called real or p stable. A Lie triple
is called Cayley if in addition 8(h) = —h, 6(e) = f. Every real Lie triple is
conjugate to one which is Cayley. Theorem 8.1 is no longer true, but the
following modification holds.

Theorem (Kostant-Rao). Two real Lie triples are conjugate if and only if
the elements e — f and €' — f' are conjugate under Go. Equivalently, two
Cayley triples are conjugate if and only if e — f and €' — f' are conjugate
under K.

8.3. Suppose e € s is nilpotent. Then e can be completed to a Lie triple
satisfying

0(e) = —e, O(h) = h, 0(f)=—71. (8.3.1)
We call such a triple #-stable. To any Cayley triple one can associate a
f-stable triple as in (8.3.1), by the formulas

5z=§(e+f+m), h:=i(e - f), f::%(e+f_m). (83.2)

A Lie triple is called normal if in addition to (8.3.1) it satisfies e = f, h =
—h.
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Theorem (Kostant-Sekiguchi). (1) Any 0-stable triple is conjugate via
K to a normal one.

(2) Two nilpotent elements e, € € s are conjugate by K, if and only if
the corresponding Lie triples are conjugate by K. Two 0-stable triples
are conjugate under K if and only if the elements h, h' are conjugate
under K.

(3) The correspondence (8.3.2) is a bijection between Gg orbits of nilpo-
tent elements in gy and K orbits of nilpotent elements in s.

Proposition. The correspondence between real and 0 stable orbits is com-
patible with closure relations.

Proof. This is the main result in [BS]. O

8.4. Let pg = my + ng be a real parabolic subalgebra and ¢ € my be a
nilpotent element.

Definition. The p-induced set from e to go is the finite union of orbits
O(E;) := Ad Gye; such that

each O(E;) is open in AdGo(e +1np) and U(’)(E,) = Ad Gy(e + ny).
We write
indgg((’)mo(e)) = U O(E;). (8.4.1)
and we say that each FE; is real or p induced from e.
The p-induced set depends on e and the Levi component mg, but not on
ng. In terms of the @-stable versions € of e, and F; of E;, p-induction is

computed in [BB]. This is as follows. Let h C m be a maximally split real
Cartan subalgebra, and £ € Z(mp) Ns an element of g such that

a € A(ng,bo) if and only if a(€) > 0.
Then

Ok (E) = JAdK (& +8)\ | J Ad K (t +2). (8.4.2)

t>0 t>0

8.5. Let q=I[+u be a #-stable parabolic subgroup, and write ¢ = [+ u for
its complex conjugate. Let e € [N s be a nilpotent element.

Proposition. There is a unique K -orbit orbit Ok (E) so that its intersection
with Ornk (e) + (uN's) is open and dense.

Proof. This follows from the fact that e + (uNs) is formed of nilpotent
orbits, there are a finite number of nilpotent orbits, and being complex, the
K-orbits have even real dimension. O

Definition. The orbit O (E) as in the proposition above is called 0-induced
from e, and we write

ind3(O1(e)) = O(B),
and say that E is 0-induced from e.
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The induced orbit is characterized by the property that it is the (unique)
largest dimensional one which meets e + uNs. It depends on e as well as ¢,
not just e and [.

8.6. Consider Zy x sl(2,C), where the nontrivial element 6 € Zsy acts on
sl(2,C) by (8.3.1). Let (m, V) be an irreducible representation of sl(2,C) of
dimension n + 1 and let {v;} be a basis so that

m(e)v; = a;vit2, w(h)v; = v, w(f)vi = vi—a. (8.6.1)

Proposition. The representation (m,V') extends in two inequivalent ways
to Zo % sl(2,C) according to whether 8 acts by £1 on vy,

Proof. This is straightforward. O

In general, for a not necessarily irreducible (7, V'), we define its signature
to be the pair of integers (a4,a_), where ay is the dimension of the +1
eigenspace of 8 on the kernel of 7 (e).

8.7. u(p,q). Let V be a finite dimensional vector space of dimension 7.
There are two inner classes of real forms of g/(V'). One is such that 6 is an
outer automorphism. It consists of the real form GL(n,R), and when n is
even, also U*(n). The other one is such that 6 is inner, and consists of the
real forms U (p, q) with p 4+ ¢ = n. In sections 8.7-8.13, we investigate p and
0 induction for these forms, and then derive the corresponding results for
so(p, q) and sp(n,R) from them in sections 8.14-8.15. Thus assume that V is
the complexification of a real vector space Vj, and is endowed with a positive
definite hermitian inner form ( , ), which is symmetric when restricted to
Vo. Let 8 € GL(V') be an elementof order 2. It determines a hermitian form
(v,w) := (fv,w) on V. If  has p eigenvalues equal to 1 and ¢ eigenvalues
equal to —1, then the hermitian form has signature (p,q). The group of
transformations which are unitary for (, ) is U(p, q).

We need some results about closure relations between nilpotent orbits.
For a f-stable nilpotent element e, we write a(e¥) for the signature of @
on the kernel of €*, and a(e¥) = a(e*) + a_(e*) for the dimension of the
kernel. If it is clear what nilpotent element they refer to, we will abbreviate
them as a4 (k).

Theorem. Two 6 stable nilpotent elements e and €' are conjugate by K if
and only if e and €% have the same signatures. The relation Ok (e') C
Ok/(e) holds if and only if for all k,

ar(e®) > ar(e¥),  a_(¢¥) 2 a_().

Proof. This follows from [D] and proposition 8.3. We give some details which
will be useful later.
Let e be a #-stable nilpotent orbit. Decompose

V=PV
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into Zsg % sl(2) representations and let ¢; be the eigenvalue of 8 on the highest
eigenweight of V;. We encode the information about e into a tableau with
rows equal to the dimensions of V; and alternate signs + and — starting
with the sign of ¢;. The number of +’s and —’s in the first column gives
the signature of § on the kernel of e. Then the number of + in the first two
columns gives the signature of @ on the kernel of e? and so on. The number
of +’s equals p, the number of —’s equals q. Write V. = V, + V_, where
V. are the +1 eigenspaces of 6. The element e is given by a pair (4, B),
where A € Hom[V,,V_], and B € Hom[V_,V,]. Then e* is represented by
(ABAB...,BABA...), and ay(k) is the dimension of the kernel of the
corresponding composition of A and B. The fact that the condition in the
theorem is necessary, follows from this interpretation. O

8.8. A parabolic subalgebra of gl(V) is the stabilizer of a generalized flag

0)=WoCcWi1C---CWp =YV, (8.8.1)
so that W; # W;,1. Fix complementary spaces V;,
Wi =W;,_1 +V,, 1> 0. (8.8.2)
They determine a Levi component
(= gl(Vh) x -+ x gl(Vg). (8.8.3)

8.9. In order to get a f-stable parabolic subalgebra, one needs to asume
that the W; are stable under 6, or equivalently that the restriction of the
hermitian form to each W; is nondegenerate. In this case we may assume
that the V; are f-stable as well, and let ¢ = [ + u be the corresponding
parabolic subalgebra of gl(V'). If we denote the signature of V; by (p;, q;),
then

lo = u(p1,q1) x -+ X ulpg, qk)- (8.9.1)
8.10. To get the complexification of a real parabolic subalgebra, start with
a partial flag
0)=WyC---CWy (8.10.1)
such that the hermitian form is trivial when restricted to Wy, and complete
it to
O)y=WyC---CcWyCcWyC---CWy=V (8.10.2)
Choose transverse spaces
Wy =W; 1+V,, Wi =W, + V7, Wi =Wi+V. (8.10.3)
They determine a Levi component
(2 gl(V1) x -+ x gl(Vg) x gl(Vo) x gl(Vy) x -+ x gl(V}"),  (8.10.4)
so that
[0 ggl(‘/la(c) Xoees Xgl(Vka(C) Xu(pOaQO)' (8105)
where (pg, qo) is the signature of Vj.
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8.11. Let now q be a maximal 6 stable parabolic subalgebra corresponding
to the flag W1, =V, C Wy = Vi + Vo = V. Let e € gl(Va) C [ be a 0 stable
nilpotent element. Note that

u = Hom(V, V1). (8.11.1)

Write n; := dimV;. Let E = e+ X, with X € u. Write 0 = 6, + 6, with
0; € End(V;). Then X0 = —61X and 61e = —ef,. Decompose

v, =Pw" o Pw; (8.11.2)

where Wi"', W, are 0 stable representations of a Lie triple containing e, and

the eigenvalue of 8 on the highest weight vi'" ; vy Isl and —1 respectively.
Order the W;, W; in decreasing order of their dimensions.

Proposition. The signature (A, (k), A_(k)) of E* satisfies
A(k) >dim Vi +ap(k — 1)+
+ max(0,#{ i | dimW; > k,¢e; = (=1)F 1} — dim Vy (_qyx),
A_(k) >dimVi_4+a_(k—1)+
+max(0, #{ i | dimW; > k,e; = (—1)*} —dimV; 1),

Proof. Since E¥ = € + Xe*~', Vi is always in its kernel. An element
v € Vh, is in the kernel of E* if e~y is in the kernel of X as well as e.
The intersection of the image of e¥~1 with the kernel of e is the span of the
highest vectors v; € W; with dim W; > k. The claim follows. [l

8.12. 'We now construct an E such that the inequalities in proposition 8.11
are equalities.
For any integers a, b, let

K = span{v} : i<a}, K, := span{'u;' : j < b} (8.12.1)

Note that
XK vy, X(K,)c V. (8.12.2)

Theorem. Let E = e+ X, and with notation as in 8.12.2, choose X such
that it is nonsingular on Kf:b for as large an a and b as possible. Then

O(E) = indge.

Proof. From the proposition it follows that the a’jE of any element in e +
(uNs) are minimal when they are equal to the RHS of proposition 8.11.
Theorem 8.7 implies that if a nilpotent element achieves this minimum,
its orbit contains any other e + X in its closure. Thus its has maximal
dimension among all orbits meeting e+ (uNs) and so the claim follows from
the observation at the end of 8.5. O

This theorem implies the following algorithm for computing the induced
orbit in the case gy = u(p, q). Suppose the signature of V; is (a4,a_). Then
add a4 +’s to the beginning of largest possible rows starting with a — and
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a— —’s to the largest possible rows starting with a +. If a; is larger than
the number of rows starting with —, add a new row of size 1 starting with
+. The similar rule applies to a_.

If e € gi(V1), the analogous procedure applies, but the ay +’s are added
to the end of the largest possible rows finishing in — and a_ —’s to the end
of the largest possible rows finishing in +.

8.13. Suppose q is the complexification of a real parabolic subalgebra cor-
responding to the flag (0) C Vi C Vi+Vy C Vi +Vo+ V), and let e C gl(Vh).

Theorem. The tableau of an orbit O(E;) in (8.4.1) is obtained from the
tableau of e by adding 2 to dimVy of the largest rows leaving the signs un-
changed.

Proof. We use (8.4.2). Let o € Hom[V}, Vi*|®@Hom[V}*, V1] be nondegenerate
such that o = Id @ Id, and extend it to an endomorphism ¢ € gl(V) so
that its restriction to Vj is zero. Then [€,e] = 0, so t + e is a Jordan
decomposition. Let

P(X)=X"+ a1 X™ 4+ +ag (8.13.1)

be any polynomial. Suppose t; € R are such that ¢; — 0, and assume there
are g; € K such that ¢;g;(¢ +e)g; ' — E. Then

ker 7 P(gi(€ +e)g; ') = ker P(€ +e). (8.13.2)
On the other hand,

tPP(gi(E+e)g; ') = [tigi(€ +e)g; '™+

o T (8.13.3)
+am-1tiltigi(§ +e)g, " + -+ 4" Id — E™.

Thus
dimker E™ |y, > dimker P(§ +€) |y, - (8.13.4)

Choosing P(X) = (X2 — 1)X", we conclude that E must be nilpotent.
Choosing P(X) = X™, (X +1)X™ ! or P(X) = (X?2 - 1)X™ 2, we can
bound the dimensions of ker E™ |y, to conclude that it must be in the
closure of one of the nilpotent orbits in the theorem. The fact that these
nilpotent orbits are indeed induced from e, follows by a direct calculation
which we omit. O

8.14. sp(V). Suppose g = sp(Vy), where (Vp,( , )) is a real symplectic
vector space of dimension n. The complexification (V, (, )) admits a complex
conjugation —, and we define a nondegenerate hermitian form

(v,w) := (v, W) (8.14.1)

which is of signature (n,n). Denote by u(n,n) the corresponding unitary
group. Since sp(Vp) stabilizes ( , ), it embeds in u(n,n), and the Cartan
involutions are compatible. The results of sections 8.1-8.3 together with
section 8.6 imply the following classification of nilpotent orbits of sp(Vj) or
equivalently #-stable nilpotent orbits.
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(1) To each orbit we assign a tableau so that every odd part occurs an
even number of times. Rows of equal size are interchangeable.

(2) The entries in each row alternate + or —. Odd sized rows occur in
pairs, one starting with + the other with —.

A parabolic sublagebra of sp(V) is the stabilizer of a flag of isotropic
subspaces
(0) =Wy C--- C Wy, (8.14.2)

so that the symplectic form restricts to 0 on W. As before, complete this
to a flag

0)=WoC---CWy,CWpC---CW;=V. (8.14.3)
We choose transverse spaces
Wi=Wisi+Vi, Wi=We+W, W/ | =W;+V' (8.14.4)
in order to fix a Levi component. We get
[ gl(Vy) X - x gl(Vk) x sp(W). (8.14.5)

If we assume that V;, W are 0-stable, then the corresponding parabolic
subalgebra is #-stable as well and the real points of the Levi component are

lo 2 u(p1,q1) X -+ X u(pr, qx) X sp(Wo). (8.14.6)

where (p;, ¢;) is the signature of V;. The parabolic subalgebra corresponding
to 8.14.4 in gl(V') satisfies

= ulpr, q1) X« - Xu(pg, gx) X u(ng, no) X u(qe, pr) X - - - X ulgr, p1). (8.14.7)

For a maximal f-stable parabolic subalgebra, the Levi component [ satis-
fies [ 22 u(p1,q1) x sp(Wh). Let e € sp(W) be a f-stable nilpotent element.
The algorithm for induced nilpotent orbits in section 8.9 implies the follow-
ing for indj (e).

(1) add p +’s to the beginning of the longest possible rows starting with
—’s, and ¢ —’s to the beginning of the longest possible rows starting
with +’s.

(2) add ¢ +’s to the ending of the longest possible rows starting with
—’s, and p —’s to the beginning of the longest possible rows starting
with +’s.

Unlike in the complex case, the result is automatically a partition for a
nilpotent element in sp(V).

For a maximal p-stable parabolic subalgebra, we must assume that V; =
Vi, W = W. Let Vi,0 and Wy be their real points. The Levi component
satisfies

lo =2 gl(Vi,0) x spWo). (8.14.8)
The results in section 8.13 imply the following algorithm for real induction.

(1) add 2 to dimV; largest possible rows of e leaving the signs un-
changed.
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(2) Suppose dim V; is odd and the last row that would be increased by
2 is odd size as well. In this case there is a pair of rows of this size,
one starting with + the other with —. In this case increase these two
rows by one each leaving the sign unchanged.

8.15. so(p,q). Suppose g = so(Vj), where (Vp, (, )) is a real nondegenerate
quadratic space of signature (p, ¢). The complexification admits a hermitian
form ( , ) with signature (p, ¢) as well as a complex nondegenerate quadratic
form (, ). The form ( , ) gives an embedding of o(p, q) into u(p,q) with
compatible Cartan involutions. The results of sections 8.1-8.3 together with
section 8.6 imply the following classification of nilpotent orbits of so(V}) or
equivalently #-stable nilpotent orbits.

(1) To each orbit we assign a tableau so that every even part occurs an
even number of times. Rows of equal size are interchangeable.

(2) The entries in each row alternate + or —. Even sized rows occur in
pairs, one starting with 4+ the other with —.

(3) When all the rows have even sizes, there are two nilpotent orbits
denoted I and II.

A parabolic sublagebra of so(V) is the stabilizer of a flag of isotropic
subspaces
(0) =Wy C--- C Wy, (8.15.1)
so that the quadratic form restricts to 0 on Wy. As before, complete this to
a flag

) =Wy C---CWyCW,C---CW;=V. (8.15.2)
We choose transverse spaces
Wi=Wia+Vi, Wi=We+W, W/, =W +V (8.15.3)
in order to fix a Levi component,
[ gl(Vh) X -+ x gl(Vg) x so(W). (8.15.4)

To get a @-stable parabolic subalgebra we must assume V;, W are 6-stable
and so V; = V;*, W = W. If the signature of V; with respect to ( , ) is
(pi, q;), and that of W is (pg, o), then

lo = u(p1,q1) X -+ X u(pk, gk) x s0(po; qo)- (8.15.5)
The parabolic subalgebra corresponding to 8.15.2 in gl(V') satisfies

[IN

= u(p1,q1) X+ X u(pg, k) X u(po, go) X u(pr, q) X+ +» X u(p1,4¢1)- (8.15.6)

For a maximal #-stable parabolic subalgebra, the Levi component [ satisfies
[ = u(p1,q1) X so(Wy). Let e € so(W) be a f-stable nilpotent element. The
algorithm for induced nilpotent orbits in section 8.9 implies the following
for ind}(e).
(1) add p1 +’s to the beginning of the longest possible rows starting
with —’s, and ¢; —’s to the beginning of the longest possible rows
starting with +’s.
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(2) add p; +’s to the ending of the longest possible rows starting with
—’s, and g1 —’s to the beginning of the longest possible rows starting
with +’s.

Unlike in the complex case, the result is automatically a partition for a
nilpotent element in so(V).

For a maximal p-stable parabolic subalgebra, we must assume that V; =
Vi, W = W. Let Vi,0 and Wy be their real points. The Levi component
satisfies

[0 = gl(Vl’o) X SO(W()). (8157)
The results in section 8.13 imply the following algorithm for real induction.

(1) add 2 to dimV; largest possible rows of e leaving the signs un-
changed.

(2) Suppose dim V] is even and the last row that would be increased by
2 is even size as well. In this case there is a pair of rows of this size,
one starting with + the other with —. Increase these two rows by
one each leaving the sign unchanged.

(3) When there are only even sized rows and dim V; is even as well, type
I goes to type I and type II goes to type IL.

9. UNITARITY

As already mentioned, the unitarity of the unipotent representations in
the p-adic case is done in [BM]. It amounts to the observation that the
Iwahori-Matsumoto involution takes unipotent spherical representations to
tempered ones.

The idea of the proof in the real case is described in [B2]. We give details
of a simpler argument in the case G = So(2n + 1), only minor changes are
required for the other cases. We will do an induction on rank.

9.1. We rely heavily on the properties of the W F-set, asymptotic support
and associated variety, and their relations to primitive ideal cells and Harish-
Chandra cells. We review some facts. Since this is not the main purpose of
the article, we refer to [SV], [V2] and [BV1], [BV2], [B3] for the details.

Let m be an admissible (g, K) module. According to [BV1], the distribu-
tion character ©, lifts to an invariant eigendistribution 6, in a neighborhood
of the idenitity in the Lie algebra. If f € C°(U) for U C g a small enough
neighborhood of 0, let fi(X) := ¢t~ 4M8f(¢71X). Then

Ox(fe) = 1) cjfio; (F) + Y " Di(f)]. (9.1.1)

>0
The D; are homogeneous invariant distributions (each D; is tempered and
the support of its Fourier transform is contained in the nilpotent cone). The
po; are invariant measures supported on real forms O; of a single complex
orbit O, and pe; is the Liouville measure on the nilpotent orbit associated
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to the symplectic form induced by the Cartan-Killing form. Furthermore
d = dimg¢ O,/2, and the number ¢; is called the multiplicity of O; in the
leading term of the expansion. The closure of the union of the supports of
the Fourier transforms of all the terms occuring in 9.1.1 is called the wave
front set, denoted W F ().

Alternatively, [V2] attaches to each 7 a combination of #-stable orbits

with integer coefficients
™)=Y a;0; (9.1.2)

where O; are K-orbits in s. The main [SV] is that the orbits and multiplic-
ities in 9.1.1 and 9.1.2 correspond via theorem 8.3, precisely formula 8.3.2,
and the multiplicities are the same i.e. ¢; = a;. The main point of algorithms
in section 8 is that they compute the associated variety of an induced rep-
resentation as a set, which we denote by W F(7). These multiplicities are
computed in the real setting in [B4] theorem 5.0.7; the formula is as follows.
Let v; € O; and v;; = v; + X;; be representatives of the induced orbits from
0;. If AV (7)) = ¥ ¢;0;, then AV (indp(m)) is

Z [Ca( '"“ (9.1.3)

This is the only place where we use [SV]. The multiplicities are straightfor-
ward to compute for real induction in terms of real orbits, it is the passage
to AV (7) that is nontrivial.

9.2. Fix a regular integral infinitesimal character x,eq. Denote by G(X;eg)
the Grothendieck group of the category of (g, K) modules with infinitesimal
character x,eq. Recall from [V2] (and references therein) that there is an
action of the Weyl group on G(Xreq), called the coherent continuation action.
Then G(xreg) decomposes into a direct sum according to blocks B,

Xreg @ gB Xreg (9.2.1)

We give the explicit description of the representation.
Type B: The Cartan subgroups are parametrized by four integers (p, ¢, 2s,7),
satisfying p + ¢ + 2s + r = n. The corresponding representation is

Z IndW W x Was X St [sgn @ sgn ® o Q triv). (9.2.2)
UEW2S
The sum is over the ¢ = 7 X 7 where 7 is a partition of s. The representation
o is labelled by dots, sign by r or 7/, and triv by c. Recall also the well known
formula
Indgr(triv) = Y (a) x (b) (9.2.3)
a+b=n
To induce we add 7 and 7’ at most one to each row to 7g, and ¢ at most one
to each column to both 77, and 7 the total number being .
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Type C: The Cartan subgroups are parametrized by four integers (¢, 2s, p, q),
satisfying p + g + 2s + t = n. The corresponding representation is

Z Ind?:’;wzsxwpqu [sgn ® o ® triv ® triv). (9.2.4)
UEWZS

The sum is over the 0 = 7 X 7 where 7 is a partition of s. The notation is set
up to take the duality in [V2] of types B and C into account. So we write r
for the sign representation of Sy, and ¢ and ¢’ for the trivial representation

of Wy, W,. We denote the rows of 77, as 0,2,...,2m and the rows of 75 as
1,3,...,2m — 1 to conform to the notation of the special symbol
70 ro + 1 ce Tom + ™M

( 71 r3+1 ... Tom—1+m —1 > (925)

Type D: The Cartan subgroups are parametrized by integers (¢, u, 2s,p, q),
p+q+ 2s+t+u = n. There are actually two Cartan subgroups for each
s > 0. The corresponding representation is

w! . .
Z IndequxW5stthu [sgn ® sgn ® o ® triv ® triv). (9.2.6)

0€W£s
The sum is over the 0 = 7 X 7 where 7 is a partition of s. We label the o

by dots, trivial representations by ¢ and ¢’ and the sgn representations by
r and 7'. These are added to the left 7, when inducing.

In this case we denote the rows of 77, as 0,2,...,2m — 2 and the rows of
Tr as 1,3,...2m — 1. This conforms to the special symbol notation
ro o+1 ... T9m_o+m—1
(7‘1 rs+1 ... Topm_1+m— 1) (9'2'7)

Let b, C g be an abstract Cartan subalgebra and let II, be a set of
(abstract) simple roots. For each irreducible representation L(7), denote
by 7(7) the tau-invariant as defined in [V2]. Given a block B and disjoint
orthogonal sets S1, So C II,, define

B(S1,82) = {y € B|S1 C 7(y), San7(y) =0} . (9.2.8)
If in addition we are given a nilpotent orbit O C g, we can also define
B(S1,82,0) = {vy € B(S1,82)| WF(L(y)) c O} . (9.2.9)

Consider the case of a complex algebra g viewed as a real Lie algebra.
Then the case S1, S2 = 00 is called the double cone C(O). The double cell
corresponding to O will be denoted C(O).

Let W; = W(S;), and define

ms(0) = [0 : TndfY, v, (Sgn ® Triv)],

mp(c) = [0 : G5(Xreg)] - (9.2.10)
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Theorem (Vogan).
1B(S1,82,0) = Y mp(o)ms(o) .
o®oeC(0)
Recall A = A». Then X defines a set Sy by
So =S\ ={a € ,|(a,\) =0} . (9.2.11)
Then the special unipotent representations attached to @ are defined to be

Unip(O UB @,8(x (9.2.12)

In the classical groups case, mp(o) is straightforward to compute. For the
special unipotent case, mg (o) equals 0 except for the representations occur-

ing in the corresponding left cell @L(O) when it is 1. The representations
are in 1-1 correspondence with the conjugacy classes in Lusztig’s quotient

of the component group A(O). See [BV2] for details.

Theorem (2).
|Unip(O)| = Z Z mp(o) .
o®oel” (0)

Definition. We say that a nilpotent orbit O is smoothly cuspidal if it sat-
isfies

Type B, D: all odd sizes occur an even number of times,

Type C: all even sizes occur an even number of times.

For O(R), a real form of O, write A(O(R)) for its (real) component group.

Proposition. For smoothly cuspidal orbits, A(O) = A(O). In particular
|ZL((’))\ = |A(O)|. Furthermore,

|Unip(O) 0)l Y 140

O(R)

where the sum is over all real forms. The set Unipg(O), consisting of the
unipotent representations in the block containing the spherical representa-
tion, satisfy

|Unips(O)| = | real forms of O| - |A(O).

Proof. The first part is theorem 5.3 in [B2]. It consists of a calculation of
multiplicities in the coherent continuation representation. The same calcu-
lation yields the second statement. We omit further details which can be
found in [B5]. O
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9.3. Two representations 7, 7’ are said to be in the same Harish-Chandra,
cell if there are finite dimensional representations F, F' such that 7’ is a
factor of 7 ® F and 7 a factor of 7’ ® F'. In this case W F(r) = WF(r').
We say that a Harish-Chandra cell is attached to a complex orbit O if
AdG(WF(r)) = O. The set of representations in a Harish-Chandra cell
give rise to a representation of the (complex) Weyl group.

Theorem ([McG]). In the classical groups Sp(n), So(p,q), each Harish-
Chandra cell is of the form @L((’)).

9.4. Consider the spherical irreducible representation L(Q) corresponding
to a nilpotent orbit O in sp(n). If the orbit O meets a proper Levi component
t, then L(O) is a subquotient of a representation which is unitarily induced

from a unipotent representation on m. By induction, L(Q) is unitary. Thus
we assume that O does not meet any proper Levi component which means

O = (2zg, ..., 2Tom), 0<20< - <2 <Tip1 <+ < To. (9.4.1)

Because of assumption (9.4.1), the W F-set of L(Q) satisfies the property
that

AdG(WF(L(0O))
is the closure of the special orbit (in the sense of Lusztig) dual to O. This
is the orbit O with partition

(1,...,1,2,...,2,...,2m,...,2m,2m + 1,...,2m + 1), (9.4.2)

-~ -~

T1 9 T2m T2m+1
where 1; = Zom—_it1 — Tom—i and rom41 = 229 + 1. Every size but the largest
one appears an even number of times in the partition of the nilpotent orbit
O..

Definition. Given an orbit O with partition 9.4.2, we call the split real
form the one where, for a given row size,
Type C,D: the number of rows starting with + as with — is equal,
Type B: in addition there is one more row of size 2m+1 starting with
+ than with —.

Theorem. The W F-set of the representation L(O) with O satisfying 9.4.1
is the closure of the split real form Ogpy of the (complex) orbit O given by
9.4.2.

Proof. The main idea is outlined in [B2]. We use the fact that if 7 is a
factor of 7', then WF(n) C WF(x'). We do an induction on m. The claim

amounts to showing that if £ occurs in WF(L(O)), then the signatures of
E, E?,... are greater than the pairs

(«'I»'Qm + 11$2m)a
(T2m + T2m 1, Tom + Tam-1),-- - (Tom + -+ + @1, Tom + - + 1), (9.4.3)
(Tom + -+ w1+ 20 + 1, 290 + -+ + @1 + T0).
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The statement is clear when m = 0; L(O) is the trivial representation. Let
01 be the nilpotent orbit corresponding to

(21‘0, ey 2.’L‘2m,2). (944)

By induction, WF(L(O;)) is the split real form of the nilpotent orbit cor-
responding to the partition

(L-,1,2,...,2,...,2m = 2,...,2m —2,2m — 1,... . 2m — 1), (9.4.5)
N N — ~ AN

e v

!

7
™1

T Tom—2 Tom—1

where r} = Tom_9_it1 — Tom—2—; and 15, | = 2z¢ + 1. Let p be the real
parabolic subalgebra with Levi component g(n — za, — Zom—1) X gl(zom —
Tom—1). There is a character x of gl(zom — Tom—_1) such that 7 := L(O) is a
factor of ' := indj[L(O1) ® x]. But by section 8, WF(r') is in the closure
of nilpotent orbits corresponding to partitions

(2,...,2,...,2m,....2m,2m + 1,....2m + 1), r1 + 79 even,  (9.4.6)
A > N I . -

~” ~”

(ri4r2)/2 T2m T2m41
(1,1, 2,...,2 ,...,2m,...,2m,2m+1,...,2m + 1), r1 + 72 odd. (9.4.7)
A >y N ~~ o - ~~ -
(ri+ra—1)/2 T2m T2m41

In any case, it follows that the signatures for E* in WF(L(O)) are greater
than the pairs

(a+, a_), (:IIQm + ZTom—1,Tom + .’Egm_l), e . (9.4.8)

Also, each row size greater than two and less than 2m + 1 has an equal
number that start with + and —, and for size 2m + 1 there is one more row
starting with 4+ than —.

The same argument with @y corresponding to

o
(2o, ... 2zom 2, 2Tom 1, 2T2m)

shows that W F(L(O)) is also contained in the closure of the nilpotent orbits
with signatures

($2m+17$2m)a ($2m+1+a+a$2m+a—)a (949)
(Tom + 1+ zom, + Tom—2, Tom + 1 + Tom, + Tom—2), --- - o

The signs on the rows greater than 2 are as claimed. O

9.5. Consider the special case when
zo=21 —1<zo=23 1<+ <Zop_9=2om—1— 1 <zgp,. (9.5.1)
)

Theorem 9.4 computes the W F-set of the spherical representation L( 7)) and
the results in section 8 show that

WF(L(O)) C indi[WF(L(Oy) X triv] (9.5.2)
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where p = m + n and
e e —
Ok = (-TOa ~e 9y L2k L2415 - - - ,.TQm),

(9.5.3)
m = gl(xor + Toky1) X 90 — Tog — Tog41)-

The component group A(O) has size 2™.
We produce 2™ irreducible representations so that W F' equals the closure
of Ogp. Let g = 1+ u be the f-stable parabolic such that

U= u(Z2iy+1,T2i,) X u(T2iy, Tain+1) X *++ X @(T2m)- (9.5.4)

The derived functor modules Ra (&) from characters on [ have W F-set equal

to Ogpy. To get infinitesimal character A(O), these characters can only be
+(1/2,...,1/2), (9.5.5)

on the unitary factors and trivial on g(x2p,). For each pair (z2; = a; —
1,z9;+1 = a;) we construct two Langlands parameters,

(@i,ai = 1,0, = 1,...,1/2,1/2),
(1/2ncaa’ia —a; + ]-7 fee 73/27 _1/2)

The notation is as follows. The vector represents a functional in a Cartan
subalgebra h, with the standard positive roots. The various subscripts and
underlinings describe the nature of the roots, compact, noncompact imag-
inare, real or complex. A coordinate a., a,. which is not underlined at all,
means that the corresponding short root is either compact or noncompact
and the value is a. A coordinate a which is underlined denotes that the
corresponding short root is real, and the value is a. A superscript a® distin-
guishes whether the character on M restricted to the m, is trivial (+) or
sign (+—). A pair a,b which is underlined denotes that the corresponding
€; — € is imaginary, €; + €; is real.

(9.5.6)

Proposition. The 2™ representations obtained by concatenating all possible
parameters as in 9.5.6 with (zom —1/2,...,1/2) have WF-set equal to Ogy.

Proof. We do an induction on m. The claim is clear for m = 0. Consider
the induced module from a representation on m in 9.5.3 which is a character
on gl(2z9r + 1) and one of the modules with parameters as in 9.5.6. By
induction they have WF-set equal to Ogp;; and there are 2™ — 1 distinct
such representations. Remains to show that the parameter where all entries
are as in the second part of 9.5.6 also has this property. We claim that this
module is Rq(x) for the character where we use + for all the zg;; in 9.5.5.
It is enough to consider the case i; = j. Write { for the character on [. The
vanishing results in [KnV] also hold, so ’Ra = 0 except for i = dimuNg. The
module is nonzero because

p=E&+2p(uns) — p(u) (9.5.7)

is dominant for ¢ the Blattner type formula implies that this K-type occurs
in Rg‘m“m. Remains to show that it has the Langlands parameter that we



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 65

claimed. Assume the Lie algebra is so(2p + 1,2p) the other case is similar.
Let h be the compact Cartan subalgebra. We write the coordinates

(al,...,ap | bl,...,bp) (958)

where the first p coordinates before the | are in the Caratn subalgebra of
so(2p + 1) the last p coordinates are in so(2p). The roots €; + €;,¢; with
1,7 < p are all compact and so are €,y + €,4; with k,I < p. The roots
€; + €p1k, €ptk are noncompact. The Langlands parameter is on the Cartan
subalgebra by where the roots €; — €,1; for ¢ < xg + -+ + 29,1 are real. It
can be as written (A%, v) with

2\ =(1/2,...,1/2,0,...,0]1/2,...,1/2,0,...,0). (9.5.9)
N—— ——
Tom /2 Tom /2
Then v equals
a2m_2(62 — €p+1) + (a2m_2 — 1)(63 — 6p_|_2) +.... (9.5.10)

Let b be the Borel subalgebra containing the Cartan subalgebra hg so that
the roots A(b, bq) are

{a : (A% a) >0, orif (a,\%) = 0 then (a,v) < 0}. (9.5.11)

Let by := b N[ The parameter (A\“,v) determines a standard module
X((A%,v) for the pair (I, L N K). This standard module is a principal se-
ries which has a unique irreducible submodule which is a character on all
the unitary factor and trivial on g(zoy,) (£ from formula 9.5.7). It satisfies

; X(\¢ if i = di
RE(GAG, v)) = { XATow) i = dimEn, 9.5.12)
0 otherwise.
Thus there is a map
RG™EM(E) — RG™IM(X (XS, v)). (9.5.13)
This map is nonzero because 9.5.7 is dominant so this is a bottom layer
K-type. (]

9.6.
Theorem. The spherical unipotent representations L(@) are unitary.

Proof. There is a parabolic subalgebra p™ with Levi component m* :=
g(n) x gl(ny) x --- x gl(ng) in g% of rank n + ny + --+ + ny, such that
the split form O;}l of

o0t =(1,1,3,3,...,2m — 1,2m — 1,2m + 1)

is induced from O on g(n), trivial on the gl’s. By the results in sections 9.2-
9.5, specifically proposition 9.2, there are 3™ - 2™ unipotent representations,
3™ for the real forms of @ and 2™ for the primitive ideal cell. We show that
in this block, for each real form O; there is exactly one Harish-Chandra, cell
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characterized by the fact that WF(r) = O,. Because of theorem 9.3 it is
enough to produce one representation with this property for each orbit.

From section 9.1, each such form O; is §-stable induced from the trivial
nilpotent orbit on a parabolic subalgebra with Levi component a real form of
gl(1)xgl(3)x---xgl(2m—1) xg(m). Using the results in [KnV], for each such
parabolic subalgebra, we can find a derived functor induced module from
an appropriate 1-dimensional character, that is nonzero and has associated
variety equal to the closure of the given real form. In fact we can construct
this derived functor module at regular infinitesimal character where the
fact that it is nonzero irreducibile is considerably easier. The facts listed in
section 9.3 imply that there are representations in this cell which are nonzero
when we apply translation functors to infinitesimal character Ag.

So in this block, there is a cell for each real form of O, and each cell has
2™ irreducible representations with infinitesimal character . In particular
for the split version, the Levi component is u(1,0) x u(1,2) x u(3,2) x --- X
so(m, m+1). For this case, section 9.5 produced exactly 2™ parameters; their
lowest K-types are of the form .. These are the only possible constituents

of the induced from L(O). Since the constituents of the restriction of a p, to
a Levi component are again p.’s, the only way L(O) can fail to be unitary
is if the form is negative on one of the K-types p.. But sections 6.2 and 5

show that the form is positive on the K-types . of L(O). O

10. IRREDUCIBILITY

10.1. To complete the classification of the unitary dual we also need to show
that the unipotent representations corresponding to the case when there is
i such that x;_1 = z; = ;41 are unitarily induced irreducible from the
corresponding unipotent representation on a Levi component G(n — 2z;) X
GL(z;). This is clear in the p-adic case from the work of Kazhdan-Lusztig
([BM]), but somewhat involved in the real case. It follows from the following
theorem. We will give a different proof in the next sections.

Theorem ([B5]). The associated variety of a spherical representation L(O)
is given by the sum with multiplicity one of the following nilpotent orbits.
Type B, D: On the odd sized rows, the difference between the number
of +’s and number of —’s is 1, 0 or -1.
Type C: On the even sized rows, the difference between the number of
+’s and number of —’s is 1, 0 or -1.

10.2. We need to study the induced modules from the trivial module on
m C g(n) where m = gl(n), or m = gl(a) x g(b).

Type B. The nilpotent orbit @ corresponds to the partition 2z = 2z = 2a,

in sp(n,C). The infinitesimal character is (—a + 1/2,...,a — 1/2) and the

nilpotent orbit O corresponds to (1,1,2,...2,3). There are three real forms
~——

2a—2
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of this nilpotent orbit corresponding to

+ -+ o+ - 4+ - + -
+ - + - + -

-+ -+ -+

¢ ¢ ¢ (10.2.1)
+ - + - + -

-+ -+ -+

+ + +

+ - +

Only the last two correspond to representations in the split group. There
are eight total unipotent representations. Their parameters are as follows.

((a—1/2)",(a—1/2)",...,3/27,3/27, 1/2%,1/2,)
((a—=1/2)",(a = 1/2)%,...,(3/2)%,(3/2)", (1/2)*,(1/2)")
((@a=1/2)",a—1/27,...,(3/2)",(3/2), (1/2)",(1/2)") (10.2.2)
(e =1/2)" (a —1/2),...,(3/2)%,(3/2)F, (1/2)%,1/2,,)
((a—-1/2)",a—-1/2",...,(3/2)7,(3/2)7, (1/2)7,1/2,,)
(a—1/2)%,(a=1/2)7,...,(3/2)",(3/2)7, (1/2)%,1/2.)

The superscripts above the underlined coordinates refer to the character of
the corresponding M,,. The first two parameters are on so(2a + 2,2a — 1),

the others on So(2a + 1,2a). The lowest K-types of the parameters are
0,...,01,...,1)
——  ——\—

a+1 a—2

0,...,0]0,...,0)
——  ——\—

a a

(0,...,0]2,0,...,0)

a a—1

0,...,02,1,...,1)

a a—1

(10.2.3)

Each line represents two K-types which are the same on the Lie algebra, but
differ on the center of the group.

We will study the induced from the trivial module on m =2 gi(2a). The
WPF-set is the middle nilpotent orbit in (10.2.1). So only two of the middle
parameters are relevant.

Type C. The nilpotent orbit O corresponds to the partition 2zq = 2z, =
2a +1 < 2z9 = 2b+ 1 in so(n,C). The infinitesimal character is

(—a,...,a)(=b,...,—1) (10.2.4)
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The nilpotent orbit O is induced from the trivial one on gl(2a + 1) x g(b)
and corresponds to

(1,...,1,2,2,3,...,3). (10.2.5)
N—— N———
2b—2a—2 2a

There are three real forms,

+ - 4+ -+ o+ -+
+ -+ o+ -+ o+ - 4+
-+ - -+ - -+ -
+ - + - -+
10.2.
+ - -+ -+ (10:2.6)
+ + +
+ +

Again there are 8 unipotent representations and 6 in the block of the spher-
ical one. Their parameters are as follows.

We will study the module which is real induced from the trivial represen-
tation on m = gl(2a + 1) x g(b). The WF-set is the middle one in 10.2.6

Type D. The nilpotent orbit @ corresponds to the partition 2z¢ = 2z, =
2a+1 in so(n, C). The infinitesimal character is (—a,...,a). The real forms
of the nilpotent orbit O are
_l_ —
- +
Do (10.2.7)
+ —
- +
There are two nilpotent orbits with this partition labelled I, I1. Each of
them is induced from m 22 gl(2a). We will study these induced modules.

Proposition. The composition factors of the induced module from the triv-
ial representation on m all have spherically relevant lowest K-types. In par-
ticular, the induced module is generated by spherically relevant K-types. Pre-
cisely,

Type B: the representation is generated by the pi.,

Type C: the representation is generated by the L,

Type D: the representation is generated by pe(0) = po(0).

Proof. This follows from the description of the parameters of the unipotent
representations and their WF-sets given above. O
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Corollary. In type B, the induced module I(—a + 1/2,...,a — 1/2,—a +
1/2,...a—1/2) has exactly two composition factors with lowest K-types pie.

Proof. The WF-set of the induced module is a single orbit, and the multi-
plicity is 2. O

10.3. We now prove the irreducibility result mentioned at the beginning
of the section in the case of type B; the other cases are similar. Let O; be
the nilpotent orbit where we have removed one string of size z;_1 := a. Let

m := gl(a) x g(n—a). Then L(O) is the spherical subquotient of the induced
representation

I(a,L(O))) := Ind%[(—a+1/2,...,a — 1/2) ® L(O1)). (10.3.1)

It is enough to show that if a paramter is unipotent and satisfies z;_1 = z; =
Tit1 = a, then I(a, L(O1)) is generated by its K-types of the form y,. This
is because of theorem 5.3, the spherical irreducible subquotient is generated
by the same set.

First, we reduce to the case when there are no 0 < x; < a. Let v be the
dominant parameter of L(Q), and assume ¢ is the smallest index so that
z;—1 = a. There is an intertwining operator

X() — I(1/2,...,m0 — 1/2;...51/2, ... ;3 o — 1/2;1) (10.3.2)

where I is induced from gi(zo) X - -+ X gl(zi—2) X g(n—32, ;_;
acters on the gl’s corresponding to the strings in (10.3.2) and the irreducible
module L(') on g(n — >>; ;1 ;). The intertwining operator is onto, and
thus the induced module is generated by its spherical vector. By the induc-
tion hypothesis, the induced module from (—a+1/2,...,a— /2)® L(v") on
9!(2a) x g(n — >, <; ;) is irreducible. But

I(1/2,...,20 —1/2;...;1/2,... ;550 — 1/2;—a + 1/2,...,a — 1/2; ") =

I(-a+1/2,...,a—1/2;1/2,..., 00 — 1/2;2...;1/2,... i — 1/2,V")
(10.3.3)
This module maps by an intertwining operator onto I(a, L(O1)), as required.

x;) with char-

So we have reduced to the case when

g =1 = T2 = Q, or
(10.3.4)
o =0< 21 =29 =23 =a.

Suppose we are in the first case and m = 1. The induced module
I(—a+1/2,...,a—1/2) (10.3.5)
is a direct sum of irreducible factors computed in section 10.2, all have lowest
K-types of the form u.. Consider the module
Ia—1/2...51/2—a+1/2,...,a—1/2). (10.3.6)
It is a direct sum of induced modules from the factors of (10.3.5). Each such
induced module is a homomorphic image of the corresponding standard
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module with dominant parameter. So (10.3.6) is also generated by its pe
isotypic components. But then

Ila—1/2;...51/2;—a+1/2,...,a — 1/2) =

I(—a+1/2,...;a—1/2;a—1/2;...;1/2)
so the latter is also generated by its p. isotypic component. Finally, the
intertwining operator

I(a—1/2;...;1/2) — I(1/2,...,a — 1/2) (10.3.8)
is onto, and the results in section 5.3 imply that the image of the intertwining
operator

(10.3.7)

1(1/2,...,a—1/2) — I(—a+1/2,...,-1/2) (10.3.9)
is onto L(—a +1/2,...,—1/2). Thus
I(—a+1/2,...,.a—1/2;—a+1/2,...,-1/2) (10.3.10)

is generated by its u. isotypic components.

Now suppose that the parameter has another zo,, 1 < z9,,, either case
of 10.3.4. The argument above shows that the module

I(—Tom—_1 +1/2,...,29m — 1/2, L(O1)). (10.3.11)
is generated by its p, isotypic components. Precisely, X () maps onto
Izom—1+1/2,...500m —1/2;1/2,... ;20 — 1/2;...51/2,... ,Zom—o — 1/2;

L(—zom—1 + 1/23 —ZTom-1 + 1/27 RER) _1/25 _1/2))
(10.3.12)
Replace L(—zom—1 +1/2,~xom—1 +1/2,...,-1/2,-1/2) by I(~z2m-1 +
1/2,...,%9m—1 —1/2). The ensuing module is a direct sum of induced mod-

ules each generated by its . isotypic component. Then observe that the
map

Izom—1+1/2,m0m — 1/2;1/2, ... ;00 — 1/2;...51/2,... , zom—2 — 1/2;
— Tom-1+1/2,...,zo0m—1 — 1/2) —
I(—zom—1+1/2,...20m — 1/2;1/2,...,20 — 1/2;...;1/2,... ,29m—2 — 1/2)

(10.3.13)

is onto. Finally,
1(1/2,... 00— 1/2...31/2,. .., Tom—o — 1/2) (10.3.14)
has L(—zom—2 + 1/2,...,1/2) as its unique irreducible quotient, because

it is the homomorphic image of an X (v) with v dominant. Therefore it is
generated by its spherical vector.

Thus in the case (10.3.4) with m > 2, we established that

I(—2om 1+ 1/2,..., @9 —1/2;—a +1/2,...,a — 1/2; L(O3)) (10.3.15)
is generated by its u. isotypic components. It is isomorphic to

I(—a+1/2,...,a = 1/2,—z9py 1 +1/2,... ,z9m — 1/2; L(O3)). (10.3.16)



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 71

Finally, I(—zom_1 + 1/2,...,%om — 1/2; L(O1)) has a unique irreducible
quotient, because it is a homomorphic image of an X () with v dominant.

Remains to consider the case when m =2 and g = 0 < 21 = 29 = 23 =
a < z4. In this case, the module

I(a+1/2,...,24—1/2; —a+1/2,...,a—1/2; —a+1/2,...,a—1/2) (10.3.17)

is generated by its pe isotypic components because of corollary 10.2. There-
fore the same holds for

I(—a+1/2,...,24 —1/2;—a+1/2,...,a — 1/2;—a +1/2).  (10.3.18)
But this is isomorphic to
I(—a+1/2,...,a—1/2,—a+1/2,...,24 — 1/2), (10.3.19)

and by section 5.3, I(—a+1/2,...,24—1/2) has L(—z4+1/2,...,-1/2,—-1/2)
as a quotient.
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