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These are notes on the extended group formalism, used in computing
Hermitian representations. Also see Notes on the Hermitian Dual [2].

1 Setup

The basic setup is a complex group G, with a fixed pinning H0, B0, {Xα}.
Recall an involution θ of G is distinguished if it fixes the pinning; θ is the
Cartan involution of the “maximally compact” form in its inner class.

The usual starting point is a distinguished involution τ , and GΓ = 〈G, δ〉
where δ2 = 1 and δgδ−1 = τ(g).

Definition 1 Fix two commuting, distinguished involutions τ, µ. The doubly
extended group is GΓ† = 〈G, δ, ǫ〉 where δ2 = ǫ2 = 1, δǫ = ǫδ, and

(2) δgδ−1 = τ(g), ǫgǫ−1 = µ(g).

Also let

(3) GΓ = 〈G, δ〉, G† = 〈G, ǫ〉.

We think of τ as given an inner class of real forms of G; GΓ = 〈G, δ〉 is
the the usual extended group. By a strong real form for G we mean with
respect to GΓ, i.e. in the inner class of τ . The involution µ is secondary.

An important special case is µ = τ , which governs Hermitian representa-
tions of strong real forms G (in the inner class of τ). Often on the dual side
µ 6= τ .
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2 KGB

Define the spaces X̃ and X for GΓ. That is

(4) X̃ = {ξ ∈ NormGΓ\G(H0) | ξ
2 ∈ Z(G)}

and

(5) X = X̃/H0

(the quotient of X̃ by the conjugation action of H0). Write p : X̃ → X for
the projection map.

Recall we fix a set {ξi | i ∈ I} ⊂ X̃ so that every element of X̃ is G-
conjugate to precisely one ξi. For i ∈ I we let θi = int(ξi) and Ki =
CentG(ξi) = Gθi. Then

(6) X ←→
∏

i∈I

Ki \ G/B0.

We make repeated use of the form of this bijection.

Lemma 7 Suppose x ∈ X . Choose ξ ∈ X̃ mapping to x, and i ∈ I, g ∈ G so
that gξig

−1 = ξ. Then the image of x under the bijection (6) is the Ki-orbit
of g−1B0g.

Note that the choices of ξ and g do not affect i or the Ki-orbit g−1B0g.
These choices amount to replacing g by hgk with h ∈ H0 and k ∈ Ki, and
note that (hgk)−1B0(hgk) = k−1(g−1B0g)k.

3 Action of µ on representations

In the setting of Section 1 suppose θ is an involution in the inner class of τ .
and (π, V ) is a (g, K) module. Then we obtain a (g, µ(K)) module by twisting
by µ as usual: πµ(X)(v) = π(µ−1(X))(v) and πµ(g)(v) = π(µ−1(g))(v) (X ∈
g, g ∈ µ(K)).

In the atlas setting, suppose x ∈ X and ξ, ξ′ ∈ X̃ are inverse images. Then
we canonically identify (g, Kξ) and (g, Kξ′)-modules. If a (g, Kξ)-module is
given by a (h0, H

θx

0 )-module χ, the corresponding (g, Kξ′)-modules is also
given by χ.
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Suppose x ∈ X satisfies µ(x) = x, and chooseo ξ ∈ X̃ lying over x. This
allows us to define an action of µ on (g, Kξ)-modules. If we can choose µ(ξ)
then µ(Kξ) = Kξ and this action is obvious, but in general µ(x) = x does
not imply we can choose ξ such that µ(ξ) = ξ. See Remark 33.

So fix x ∈ X satisfying µ(x) = x. We’re interested in parametrizing pairs
((π, V ), ψ) where (π, V ) is an irreducible (g, K)-module such that (πµ, V )
is isomorphic to (π, V ), and ψ : V → V intertwines πµ and π. Choose an

inverse image ξ of x in X̃ , and let Kξ = CentG(ξ) as usual.

Definition 8 Let K†
ξ = CentG†(ξ).

Lemma 9 Fix ξ and let K = Kξ, K
† = K†

ξ . Suppose (π†, V ) is an irreducible

(g, K†)-module.
Suppose π†|(g,K) is irreducible, and write this restriction as (π, V ). Then

π†(ǫ) : V → V intertwines (π, V ) and (πµ, V ).
Suppose π† is reducible. Then this restriction can be written (π1, V1) ⊕

(π2, V2), and π†(ǫ) : V1 → V2 is an intertwining operator (πµ
1 , V1) ≃ (π2, V2).

So we consider irreducible (g, K†)-modules, with an emphasis on those
whose restriction to (g, K) is irreducible.

4 Automorphism of X and Z

Fix GΓ,† as in Section 1.
Recall if ξ ∈ X̃ then the automorphism θξ is defined. Furthermore if

x ∈ X choose ξ ∈ X̃ lying over x and define the automorphism θx,H0
of H0

by θx,H0
(h) = θξ(h) This is well defined, independent of the choice of ξ. We

write Hθx

0 for the fixed points (strictly speaking we should write H
θx,H0

0 or

H
θξ

0 ).
Now define G∨, τ∨, G∨Γ, H∨

0 and X ∨ as usual. In particular X∗(H∨
0 ) =

X∗(H0) and X∗(H
∨
0 ) = X∗(H0). Suppose φ is an automorphism of H0 =

X∗(H0) ⊗ C∗. Then φt is the automorphism of X∗(H0) given by the pair-
ing X∗(H0) × X∗(H0) → Z, and this also defines an automorphism φt of
X∗(H

∨
0 ), X∗(H∨

0 ) and H∨
0 .

Recall

(10) Z = {(x, y) ∈ X ×X ∨ | θy,H∨ = −θt
x,H}
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Recall the distinguished automorphism µ of G induces an automorphism,
also denoted µ, of the based root datum Db(G) = (X∗(H0),Π, X∗(H0),Π

∨).

Definition 11 Let µt be the automorphism of Db(G
∨) obtained from µ by

reversing the order of the factors, as well as the corresponding automorphism
of G∨.

Thus the action of µt on H∨
0 is described above. Furthermore if α is a

simple root of H0 in G, then α∨ is a simple root of H∨
0 in G∨, and µt(Xα∨) =

Xµ(α)∨ .

Lemma 12 The automorphism µ of G restricts to an automorphism of X̃ ,
and this factors to an automorphism (also denoted µ) of X .

Proof. Since µ normalizes H0 it is obvious that it acts on X̃ . If x ∈ X choose
an inverse image ξ ∈ X̃ , and define µ(x) = p(µ(ξ)). If ξ′ is another choice,
then ξ′ = hξh−1 for h ∈ H0, and p(ξ′) = p(hξh−1) = p(h)p(ξ)p(h−1) = p(ξ).
�

We also apply this to µt to get an automorphism of X ∨.

Proposition 13 For (x, y) ∈ Z define µ(x, y) = (µ(x), µt(y)). This is an
automorphism of Z.

Proof. The only thing we need to check is the transpose relationship in (10),
which is immediate. �

5 Cayley Transforms and Cross Actions

Fix GΓ,† as in Section 1.
We consider how the automorphism µ of Z of Proposition 13 behaves

with respect to Cayley transforms and cross actions, and how to obtain new
µ-fixed parameters from old ones.

Recall the Tits group is generated by {σα |α ∈ Π} (Π is the simple roots)
and the elements of order 2 in H . Since µ is distinguished it induces an
automorphism of the Tits group, and for all α ∈ Π, µ(σα) = σµ(α).

Lemma 14 Fix γ ∈ Z.

1. For all α µ(sα × γ) = sµ(α) × µ(γ).
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2. If α is γ-imaginary then µ(α) is µ(γ)-imaginary and µ(cα(γ)) = cµ(α)µ(γ)
(as sets).

3. If α is γ-real then µ(α) is µ(γ)-real and µ(cα(γ)) = cµ(α)µ(γ) (as sets).

This is routine.

Lemma 15 Suppose µ(γ) = γ and µ(α) = α.

1. If µ(α) = α then µ(sα × γ) = sα × γ.

2. If α is γ-imaginary and γ′ ∈ cα(γ) then µ(γ′) = γ′.

3. If α is γ-real and γ′ ∈ cα(γ) then µ(γ′) = γ′.

Proof. Part (1) follows easily from the previous Lemma, as do (2) and (3)
if the Cayley transforms are single valued.

Suppose α is γ-real. Write γ = (x, y) and choose an inverse image ξ ∈ X̃
of x. There is a dangerous bend here: it is not necessarily the case that
cα(x) is the image of {σαξ,mασαξ} in X where σα is the Tits group element.
However we can choose ξ so that this holds. That is (cf. [4, Lemma 14.6])
for any ξ there exists σ̃α such that σ̃αξ is conjugate to ξ. We are free to
vary ξ by conjugation by h ∈ Hα ⊂ Gα (Gα is locally isomorphic to SL(2)),
which amounts to varying σ̃α) by conjugation. Since σα acts on Hα ≃ C∗ by
z → z−1, we can replace σ̃α with the Tits element σα.

Now with this choice of ξ we have γ1 (say) is the image of (σαξ, σα∨ξ∨)
where ξ∨ is any choice of inverse image of y (cf. [4, Lemma 14.2]), and
γ2 = (mασαξ, σα∨ξ∨). Now it is clear that µ(γi) = γi (i = 1, 2). This proves
(3), and (2) is similar.

It is a little more work to get a new µ-fixed parameter if µ(α) 6= α. First
consider the case when α, µ(α) are orthogonal.

Lemma 16 Suppose µ(γ) = γ. Let β = µ(γ) and suppose 〈β, α∨〉 = 0. Let

1. µ(sβsα(γ)) = sβsα(γ).

2. Suppose α is imaginary and γ′ ∈ cβ(cα(γ)). Then µ(γ′) = γ′.

3. Suppose α is real and γ′ ∈ cβ(cα(γ)). Then µ(γ′) = γ′.
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Again (1) is immediate, and (2) and (3) require the same type of argument
as in the previous Lemma.

Finally the case where α 6= µ(α), 〈µ(α), α∨〉 6= 0 is a little harder. This
only occurs for the middle two roots in type A2n. �

Conjecture 17 Suppose µ(γ) = γ, β = µ(α) 6= α and 〈β, α∨〉 6= 0. Then
α, β are of the same type (complex, real or imaginary) with respect to γ.

1. Suppose α, β are complex and α (and therefore also β) is of type C+
with respect to γ. Then β is non-compact imaginary type 2 with respect
to sα× γ, and exactly one of the two constituents of cβ(sαγ) is fixed by
µ.

2. Suppose α, β are complex and α (and therefore also β) is of type C−
with respect to γ. Then β is a real, non-parity, type 2 root with respect
to sα × γ, and exactly one of the two constituens of cβ(sαγ) is fixed by
µ.

sketch of proof. This holds for SL(3,R) and dually SU(2, 1). The general
case should reduce to these.

empty: type

Lie type: A2 sc s

main: block

there is a unique real form: sl(3,R)

possible (weak) dual real forms are:

0: su(3)

1: su(2,1)

enter your choice: 1

Name an output file (return for stdout, ? to abandon):

0(0,5): 0 0 [C+,C+] 2 1 (*,*) (*,*)

1(1,4): 1 0 [i2,C-] 1 0 (3,4) (*,*) 2,1

2(2,3): 1 0 [C-,i2] 0 2 (*,*) (3,5) 1,2

3(3,0): 2 1 [r2,r2] 4 5 (1,*) (2,*) 1,2,1

4(3,1): 2 1 [r2,rn] 3 4 (1,*) (*,*) 1,2,1

5(3,2): 2 1 [rn,r2] 5 3 (*,*) (2,*) 1,2,1

block: dualblock

Name an output file (return for stdout, ? to abandon):
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0(0,3): 0 0 [i1,i1] 1 2 (4,*) (3,*)

1(1,3): 0 0 [i1,ic] 0 1 (4,*) (*,*)

2(2,3): 0 0 [ic,i1] 2 0 (*,*) (3,*)

3(3,2): 1 1 [C+,r1] 5 3 (*,*) (0,2) 2

4(4,1): 1 1 [r1,C+] 4 5 (0,1) (*,*) 1

5(5,0): 2 1 [C-,C-] 3 4 (*,*) (*,*) 1,2,1

�

6 Parameters

This section is a bit painful, but the main result is more or less obvious:
Proposition 29 shows how the action of µ on (g, K0)-modules carries over to
parameters.

As in Section 1 we’re interested in (g, K)-modules for some K. So fix
a strong involution ξ0 in our given set of representatives, and let θ0 = θξ0 ,
K0 = CentG(ξ0). Also let x0 = p(ξ0) ∈ X , and we assume

(18) µ(x0) = x0.

See Remark 33. Assume µ(ξ0) = ξ0. We’re interested in how µ acts on
(g, K0)-modules.

Remark 19 At least if µ = τ , µ(K0) = K0 implies we can choose ξ0 sat-
isfying µ(ξ0) = ξ0. To see this, recall we can assume ξ0 is the fiber of δ,
i.e. ξ0 = hδ with h ∈ H0. Conjugating by t ∈ H0 gives tτ(t−1)hδ. Recall
H0 = T0A0 where T0 (resp. A0) is the identity component of H0τ (resp.
H−τ

0 ). Also A0 = {tτ(t−1) | t ∈ H0}. Therefore by choosing t we can assume
h ∈ T0. Then τ(hδ) = hδ.

See Remark 33.
If we need more general cases I’ll have to revisit this.

Recall a (g, K0)-modules is given by a local system on a K0-orbit on the
variety of Borel subgroups. Fix a Borel subgroup B. Then

StabK0
(B) = Hθ0U

where U is a connected unipotent group andH is a θ0-stable Cartan subgroup
of B. Then a (g, K0)-module is determined by an (h, H̃θ0)-module. Here H̃θ0

is the ρ-cover of Hθ0.
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Definition 20 A complete parameter for G is a triple (x, y, λ0) where

1. (x, y) ∈ Z

2. λ0 ∈ h0 = X∗(H0)⊗C

3. 〈λ0, α
∨〉 > 0 for all simple roots α,

4. exp(2πiλ0) = y2.

In (4) we identify λ0 with an element of X∗(H
∨
0 ) ⊗ C = h∨

0 . Since y2 ∈
Z(G∨) (4) implies λ0 is integral, so the inequality in (3) makes sense.

Alternatively if we fix an infinitesimal character χ we can define complete
data to be triples (x, y, χ); this is defined to be (x, y, λ) where χ = χλ and λ
is dominant.

Now (x, y, λ0) determines an (h0, H̃
θx

0 )-module as follows. Take (λ0, κ0);
we have to define κ0. For this we need the basepoint.

Recall there is a surjection p : X → IW where IW is the twisted in-
volutions in the Weyl group. That is W Γ = W ⋊ Γ = 〈W, δ〉, and IW =
{wδ | (wδ)2 = 1}.

Suppose wδ ∈ IW . Let Ψ+
im,w be the positive imaginary roots with respect

to θx,H0
where p(x) = wδ; this is independent of x.

Lemma 21 There is a canonical way to choose, for all wδ ∈ Iw, an element
x[w] satisfying p(x[w]) = wδ and Ψ+

im,w is large with respect to θx[w],H0
. In

particular x[1] = exp(πiρ∨δ).

Here is how S = {x[w] |wδ ∈ IW} is determined. Take x[1] = exp(πiρ∨)δ.
Consider the large block at ρ for the quasisplit form of G. Then S is the set of
x ∈ X such that the corresponding standard representation for (the quasisplit
form of) G∨ occurs in the character formula for the trivial representation.

Note that x[w]2 = zρ where zρ = exp(2πiρ∨) ∈ Z(G).

Remark 22 The element exp(πiρ∨)δ is canonical and well defined, although
the software does not tell us which number in the output of kgb it corresponds
to. Making such an assignment amounts to choosing which parameter in the
output of block corresponds to the trivial representation of G∨.
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We apply this on the dual side. Given y, write p(y) = wδ∨, and define
y[w] by the Lemma. Now write

(23) y = exp(2πiγ∨)y[w] (γ∨ ∈ X∗(H
∨
0 )⊗ C).

Recall y defines the automorphism θy,H∨
0
(h) = yhy−1 of H∨

0 , and y[w]
defines the same automorphism of H∨

0 . Denote this by θ∨. Note that y[w]2 =
exp(2πiρ).

Then define

(24) κ0 = λ0 − (γ∨ + θ∨γ∨) ∈ ρ+X∗(H0).

Let’s check this. Note that y[w]

(25)

y2 = (exp(2πiγ∨)y[w])2

= exp(2πi(γ∨ + θ∨γ∨))y[w]2

= exp(2πi(γ∨ + θ∨γ∨ + ρ))

and setting this equal to exp(2πiλ0) gives the assertion. Also (24) immedi-
ately implies

(26) λ0 − θ
∨λ0 = κ0 − θ

∨κ0

which is condition [5, Proposition 5.8(b)].

By the usual mumbo-jumbo (λ0, κ0) defines an (h0, H̃
θx

0 )-module. See [3]

and [5, Proposition 5.8]. Now this (h, H̃
θx0

0 )-module defines a (g, Kξ)-module

where ξ is any element of X̃ lying over x. We eventually need to conjugate
everything back to get a (g, K0)-module, but we first state an elementary
result.

Lemma 27 Suppose (x, y, λ0) is a complete parameter. Choose ξ lying over
x, so this determines a (g, Kξ)-module (π, V ). Let (πµ, V ) be the (g, Kµ(ξ))
module obtained in the usual way. Then the parameter for the representation
(πµ, V ) is (µ(x), µt(y), µt(λ0)).

This follows immediately by transport of structure.
Now assume x is conjugate to x0. This is a well defined notion; it is

equivalent to ξ is conjugate to ξ0 where ξ ∈ X̃ lies over x. So choose ξ ∈ X̃
over x and g ∈ G satisfying gξ0g

−1 = ξ. By Lemma 7 x corresponds to the
K0-orbit of g−1B0g. So let:
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(28)

B = g−1B0g

H = g−1H0g

λ = g−1λ0g ∈ h∗

κ = g−1κ0g ∈ ρ+X∗(H).

Then (λ, κ) is a (h, H̃θ0)-module, and this defines the (g, K0)-module associ-
ated to the data (x, y, λ0).

Proposition 29 Fix ξ0 and K = Kξ0 as above. Suppose (x, y, λ0) is a com-
plete parameter, and x is G-conjugate to x0. Let (π, V ) be the (g, K0)-module
defined by (x, y, λ0).

Assume µ(x0) = x0. Then (πµ, V ) is given by the complete parameter
(µ(x), µt(y), µt(λ0)).

Proof. This is merely a question of chasing around the definitions, using the
preceding discussion to carry everything back to (g, K0). This is all pretty
obvious with the possible exception of the κ term.

Let π(x, y, λ0) be the (g, K0) module defined by (x, y, λ0). This is given
by the data

(30)(a) g−1(h0, H̃
θx0

0 , λ0, κ0)g.

Here g−1H0g = H , and see below for κ0.
It is clear that π(x, y, λ0)

µ is given by

(30)(b) (µ(g−1h0g), µ(g−1(H̃
θx0

0 )g), µt(g−1λ0g), µ
t(g−1κ0g)).

On the other hand the representation π(µ(x), µt(y), µt(λ0)) is given by

(30)(c) u−1(h0, H̃
θx0

0 , µt(λ0), κ
′
0)u.

Here u−1H0u = µ(H). Using the fact that µ(H0) = H0 and g−1H0g = H we
can take u = µ(g). Then (c) is equal to

(30)(d) (µ(g−1)h0µ(g), µ(g−1)H̃
θx0

0 µ(g), µ(g−1)µt(λ0)µ(g), µ(g−1)κ′0µ(g)).

See below for κ′0.
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It is immediate that the first three terms are equal to the first three terms
of (b):

(30)(e)

µ(g−1h0g) = µ(g−1)h0µ(g)

µ(g−1(H̃
θx0

0 )g) = µ(g−1)H̃
θx0

0 µ(g)

µ(g−1λ0g) = µ(g−1)µ(λ0)µ(g)

We have to show

(30)(f) µ(g−1κ0g) = µ(g−1)κ′0µ(g),

i.e.

(30)(g) µt(κ0) = κ′0.

Now we recall

(30)(h) κ0 = λ0 − (γ∨ + θ∨y,H∨
0

γ∨)

with y = exp(2πiγ∨)y[w], where p(y) = wδ∨.
On the other hand

(30)(i) κ′0 = µt(λ0)− (β∨ + θ∨µ(y),H∨
0

β∨)

with µt(y) = exp(2πiβ∨)y[w′], where p(µt(y)) = w′δ∨. Clearly w′ = µt(w).
This comes down to the following Lemma, restated for G.

Lemma 31 Suppose p(x) = wδ, so p(µ(x)) = µ(w)δ. Then

(32) µ(x[w]) = x[µ(w)].

This follows from Lemma 21, and the fact that µ(exp(πiρ∨)) = exp(πiρ∨)
since µ preserves the positive roots. �

Remark 33 The Proposition actually shows the following. Suppose we’re
given a complete parameter (x, y, λ0). Choose ξ lying over ξ, so this defines
a (g, Kξ)-module. Suppose µ(x) is G-conjugate to x. Then we can conjugate
the (g, Kµ(ξ))-module (πµ, V ) to a (g, Kξ) module. These two (g, Kξ)-modules
are isomorphic only if µ(x) = x (and also µt(y) = y, µt(λ0) = λ0).

Therefore it makes sense to assume that µ(x0) = x0 for some x0 which is
G-conjugate to x.
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7 The Chevalley Automorphism

For use in the next section here are some facts about the Chevalley automor-
phism.

Given G and a pinning, the Chevalley automorphism is the automorphism
C satisfying C(h) = h−1 for h ∈ H , and C(Xα) = X−α for all simple roots
α. Recall the pinning includes the Xα for α simple, and X−α is determined
by [Xα, X−α] = α∨.

Lemma 34 The Chevalley automorphism of G commutes with any distin-
guished automorphism of G.

Now suppose we are given GΓ = 〈G, δ〉. Recall δ acts by a distinguished
automorphism τ .

Definition 35 Extend C to an automorphism of GΓ by C(δ) = δ.

It is clear that the automorphism C of GΓ preserves X̃ , and since C
preserves H this action descends to X .

It is well known that for g semisimple C(g) is conjugate to g−1. It is a
remarkable fact that C(x) = x−1 for all x ∈ X .

Proposition 36 We have C(x) = x−1 for all x ∈ X . More precisely for all

ξ ∈ X̃ we have C(ξ) = hξ−1h−1 for some h ∈ H.

Proof.

First suppose p(x) = δ. Choose ξ = hδ ∈ X̃ lying over x. After conju-
gating by H we may assume τ(h) = h, i.e. hδ = δh. Then

(37) C(ξ) = C(hδ) = h−1δ = (δh)−1 = (hδ)−1 = ξ−1.

The condition C(x) = x−1 is equivalent to C(ξ) = hξ−1h−1, for any ξ lying
over x, and for some h (depending on ξ). Writing hξ−1h−1 = hθx(h

−1)ξ−1

we see the condition is equivalent to:

(38) C(ξ)ξ ∈ Ax

where Ax is the identity component of {h ∈ H | θx(h) = h−1}.
We proceed by induction, using Cayley transforms in imaginary roots and

Cayley transforms.
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Recall the Tits group W̃ is a subset of G, equipped with a map to the Weyl
group W . It has generators σα for α simple, satisfying the braid relations,
and σ2

α = mα = α∨ ∈ H . Every element w of W has a canonical lift w̃ to W̃ .
It is immediate from the definition of the Tits group that if α is simple then

(39) C(σα) = σ−1
α .

Assume C(ξ)ξ ∈ Ax, so

(40) C(ξ) = hξ−1 (h = tθx(t
−1) ∈ Ax).

Suppose α is an x-imaginary root. Then σαξ ∈ X , and (σαξ)
2 = ξ2, which

implies

(41) σαξσα = ξ.

Then

(42)

C(σαξ)σαξ = σ−1
α (hξ−1)σαξ

= σ−1
α h(σ−1

α ξ−1σ−1
α )σαξ (by (41))

= σ−1
α hσ−1

α .

Now σα and h commute since h ∈ Ax and α is x-imaginary. Therefore this
equals mαh, which is contained in Asαx. To be explicit, it equals

(43) (ut)θsαx(ut)
−1

where uθsαx(u
−1) = mα, which is possible since mα ∈ Asαx.

Now suppose α is any root and consider σαξσ
−1
α . The image x′ of this

element in X can be denoted sα × x.
I claim

(44) C(σαξσ
−1
α )σαξσ

−1
α = uθsα×x(u

−1)

where u = σαtσ
−1
α mα.

You don’t really want to check this, do you? Let’s see, write σ = σα and
m = mα = σ2

α:

(45)

C(σξσ−1)σξσ−1 = σ−1C(ξ)σσξσ−1

= σ−1C(ξ)mξσ−1

= σ−1C(ξ)ξ(ξ−1mξ)σ−1

= σ−1[tξt−1ξ−1](ξ−1mξ)σ−1

13



On the other hand

(46)

uθsα×x(u
−1) = (σtσ−1m)(σξσ−1)(σtσ−1m)−1(σξσ−1)−1

= (σtσ−1m)(σξσ−1)(mσt−1σ−1)(σξ−1σ−1)

= σt(σ−1mσ)ξ(σ−1mσ)t−1(σ−1σ)ξ−1σ−1

= σtmξmt−1ξ−1σ−1

= σtξ(ξ−1mξ)mt−1ξ−1σ−1

= σ(tξt−1)(ξ−1m)(ξmξ−1)σ−1

= σ[tξt−1ξ−1](mξmξ−1)σ−1

= σ[tξt−1ξ−1](ξmξ−1)mσ−1

Comparing these we need to show

(47) σ−1[tξt−1ξ−1](ξ−1mξ)σ−1 = σ[tξt−1ξ−1](ξ−1mξ)mσ−1.

Multiply on the left by σ−1 and the right by σ to give

(48) m[tξt−1ξ−1](ξ−1mξ) = σ[tξt−1ξ−1](ξ−1mξ)m

which is true since the terms in the middle are in H . �

We are also given G∨Γ = 〈G∨, δ∨〉. Here δ∨ acts by τ∨. We recall the
definition of τ∨: the automorphism −τ t of the (non-based) root datum of G∨

is defined. This induces an automorphism of the based root datum of G∨,
and (via a chosen pinning) the automorphism τ∨ of G∨.

The automorphism τ t of the based root datum for G∨ also defines an
automorphism denoted τ t of G∨. Here is how τ∨ and τ t are related.

Lemma 49 Let C be the Chevally automorphism of G∨ and let w̃0 be the lift
of the long element of the Weyl group to W̃ for G∨. Then

(50) τ∨(g) = w̃0C(τ t(g))w̃−1
0 .

It is worth mentioning that w̃2
0 = exp(2πiρ) (a proof of this was supplied

by John Stembridge and (independently) Marc van Leeuwen).
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8 Case of the Hermitian Dual

Fix GΓ = 〈G, δ〉, where δ acts by τ , and fix K in this inner class.

Proposition 51 Suppose (π, V ) is an irreducible (g, K)-module with real
infinitesimal character. Then (πh, V h) is isomorphic to (πτ , V ).

Sketch of Proof. Let θπ be the global character of π. It is well known
that if π∗ is the contragredient then

(52)(a) θ∗π(g) = θπ(g−1).

There is also a bar-operation on representations satisfying

(52)(b) θπ(g) = θπ(g).

There is a basic result that πh ≃ π∗ [reference?] so

(52)(c) θπh(g) = θπ(g−1).

Let’s assume that G is acceptable, i.e. ρ factors to H . Let λ be the in-
finitesimal character of π. By results of Harish-Chandra and the Casselman-
Osborn conjecture, for any real Cartan subgroup H(R) we can write

(52)(d) θπ(g) =

∑
χ aχχ(g)

D(g)
.

Here g is contained in a certain subset of the regular elements of H(R). The
sum is over characters χ satisfying dχ is conjugate to λ, and the aχ are
integers. Finally D(g) is a version of the Weyl denominator. See [1, Section
4].

If λ is real then dχ is real for all χ occuring in this formula. That is,
if we write the real Lie algebra of H(R) as t0 + a0, then dχ ∈ it0 + a0

for all χ occuring in the sum. Therefore for any such χ, writing g = ta,
χ(ta) = χ(t)χ(a) with |χ(t)| = 1 and χ(a) ∈ R. Then

(52)(e)

χ(g−1) = χ(t−1)χ(a−1)

= χ(t)
−1
χ(a)−1

= χ(t)χ(a−1)

15



A similar result holds for D(g): D(g−1) = D(ta−1).
Now we claim that for g = ta ∈ H(R), τ(g) is G(R)-conjugate to ta−1.

This requires some thought, since it involves G(R), notG(C), but let’s assume
it for now. Then

(52)(f) θπh(g) = θπ(g−1) =

∑
χ χ(ta−1)

D(ta−1)

and

(52)(g) θπτ (g) = θπ(τ(g))

∑
χ χ(ta−1)

D(ta−1)

�

Remark 53 If G is not acceptable there is the usual issue with ρ-covers,
but nothing essentially different.

By Proposition 29 we conclude:

Corollary 54 Define GΓ,† by taking µ = τ . Fix x0 ∈ X , an inverse image
ξ0 ∈ X̃ , and corresponding K = Kξ0. Assume τ(x0) = x0. Suppose (x, y, λ)
is a complete parameter, with corresponding (g, K)-module (π, V ). Assume
λ is real. Then (πh, V ) is given by parameter (τ(x), τ t(y), τ t(λ)).

Remark 55 Note that this doesn’t involve any any computation in Z. We
give a direct atlas-theoretic proof below.

Remark 56 The assumptions that τ(ξ0) = ξ0 and x is G-conjugate to x0 =
p(ξ0) implies that τ(x) is G-conjugate to x0. Therefore (in spite of superficial
appearances) (τ(x), τ t(y), τ t(λ)) also necessarily defines a (g, K)-module.

Here is a sketch of a purely atlas-theoretic proof of Corollary 54. In this
section only we denote our fixed Cartan and Borel by H,B (rather than
H0, B0 elsewhere).

Suppose (x, y, λ) is a complete parameter for the (g, K)-module (π, V ).
We assume λ is real, i.e. λ ∈ X∗(H) ⊗ R. Let λ be the complex conjuate
of λ with respect to the real form of H defined by θx. This differs from the
one defined by X∗(H)⊗ R by −1 on the t-part. See [2]. An important fact
is that for λ real,

(57) −λ = θt(λ).

(the t denotes transpose, and is only there because λ ∈ h∗, not h).
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Lemma 58 Write p(x) = wxδ ∈ IW , so wx ∈W . Let w∨
x be the correspond-

ing element on the dual side. The parameter for (πh, V h) is

(59) (w−1
x xwx, w

∨−1
x y−1w∨

x ,−w
∨−1
x λ).

Here w−1
x xwx is the cross action of W on X ; more precisely this is n−1

x xnx

where nx ∈ G is a representative of wx ∈W .

Proof. It is straightforward that the map of the Weil group is given by the
parameter (x, y−1,−λ). See [2]. This isn’t a complete parameter if −λ is not
dominant. Write x = gxδ, and p(x) = wxδ ∈ IW , so p(gx) = wx. Then

(60)(a) θx(X) = gxτ(X)g−1
x = wx(τ(X)) (X ∈ h0).

and acting on h∗ we have

(60)(b) θt
x(λ) = w∨

x (τ t(λ)) (λ ∈ h∗
0).

Therefore by (57)

(60)(c) −λ = θt
x(λ) = w∨

x (τ t(λ))

and multiplying both sides on the left by w∨−1
x gives

(60)(d) −w∨−1
x λ = τ t(λ).

Now since τ is distinguished τ t(λ) is dominant.
Conjugating x by w−1

x and y,−λ by w∨−1
x gives (59). �

Lemma 61 We can also write (59) as

(62) (τ(x), w∨−1
x y−1w∨

x , τ
t(λ)).

Proof. The last entry is given by (60). For the first, recall gx maps to wx,
so

(63) w−1
x xwx = g−1

x (gxδ)gx = δgx = τ(gx)δ = τ(x).

�

The hard part is:

17



Lemma 64

(65) w∨−1
x y−1w∨

x = τ t(y).

Proof.

First of all we claim if p(y) = w∨
y then

(66) w∨
x = w∨

yw
∨
0

where w∨
0 is the long element of the Weyl group of G∨. To see this note that

for X ∈ h θx(X) = wxτ(X), so for X∨ in h∨, θt
x(X

∨) = θ∨x τ
t(X∨). This is

required to equal θy(X
∨) = w∨

y τ
∨(X∨), i.e.

(67) w∨
x τ

t(X∨) = −w∨
y τ

∨(X∨).

By Lemma 49 τ∨(X∨) = −w∨
0 τ

t(X∨), since the Chevalley automorphism
acts by −1 on h∨. This gives the claim.

Now choose an inverse image ξ∨ = g∨y τ
∨ of y in X̃ , and let σ∨

0 ∈ G∨

be a representative of the long element of the Weyl group. Note that g∨y
is a representative of w∨

y . Then by (66) g∨y σ
∨
0 is a representative of w∨

x , so
w∨−1

x yw∨
x is the image of

(68) σ∨−1
0 g∨−1

y ξ−1
y g∨y σ

∨
0 .

Writing ξ∨ = g∨y δ
∨ gives

(69) σ∨−1
0 g∨−1

y δ∨g∨−1
y g∨y σ

∨
0 . = σ∨−1

0 g∨−1
y δ∨σ∨

0

Note that τ∨(ξ−1) = τ∨(δ∨g∨−1
y ) = g∨−1

y δ∨, so this equals

(70) σ∨−1
0 τ∨(ξ−1

y )σ∨
0

By Lemma 49 this equals

(71) σ∨−1
0 (σ∨

0C(τ t(ξ−1
y )σ∨−1

0 )σ∨
0 = τ t(C(ξ−1

y )).

By Proposition 36 C(ξ−1
y ) = ξy modulo conjugation by H∨, i.e. the image of

C(ξ−1
y ) in X ∨ is y. �
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Proposition 72 Suppose (π, V ) has parameter (x, y, λ) and λ is real. Then
(πh, V ) has parameter

(73) (τ(x), τ t(y), τ t(λ)).

This agrees with Corollary 54.

Remark 74 Strictly speaking parameters are only defined if λ is integral,
which (ignoring split tori in the center) implies λ is real. Presumably once
we’ve extended the atlas construction to general infinitesimal character this
result will hold.

9 Automorphism of the Weil group

This section isn’t really needed, but it has some philosophical appeal.
There are two interesting automorphisms of the Weil group. It is worth-

while to compute the effect of these automorphisms on L-packets.
Recall WR = 〈C∗, j〉 where jzj−1 = z and j2 = −1.

Definition 75 Define automorphism α, β of WR as follows. Let α(j) =
β(j) = j. For z ∈ C∗ define α(z) = z−1 and β(z) = z−1.

For φ : WR → G∨Γ let Πφ denote the corresponding L-packet of a real
form of G.

Lemma 76 Suppose φ : WR → G∨Γ is an L-homomorphism. Let φα be the
L-homomorphism φα(w) = φ(α(w)), and define φβ similarly.
(1) Πφα

= Π∗
φ = {π∗ | π ∈ Πφ}.

(2) Assume Πφ has real infinitesimal character. Then

(77) Πφβ
= Πh

φ = {πh | π ∈ Πφ}.

Sketch of Proof. Suppose φ is given by parameter (y, λ). Then

(78)(a)
φα ↔ (y−1,−λ)

φβ ↔ (y−1,−θy(λ))
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It is straightforward to see that φα corresponds to the contragredient. For
the second part we need (57), which says that for λ real, −λ = θt(λ), so

(78)(b) θy(λ) = λ.

More details later. . .
�

10 Stabilizer in the Extended Group

As in Section 6 fix ξ0 and let θ0 = θξ0 , K0 = Kξ0 . Let x0 = p(ξ0) and we
assume µ(x0) = x0 (see Remark 33). As in Section 1 we’re interested in

(g, K†
0)-modules where K†

0 = CentG†(ξ0). So for ξ ∈ X̃ let

(79) K†
ξ = CentG†(ξ).

We start with an element x ∈ X which is G-conjugate to x0 = p(ξ0),
which determines a K0-orbit on G/B. Recall (Lemma 7) if ξ lies over x, and
ξ = gξ0g

−1, then this is the K0-orbit of B = g−1B0g. We need to compute
Stab

K
†
0

(B).

If µ(x) 6= x then Stab
K

†
0

(B) = StabK0
(B), so assume µ(x) = x. By

Proposition 29 this is necessary for this orbit to support a representation
fixed by µ.

Since µ(x0) = x0 we know µ(ξ0) = tξ0t
−1 for some t ∈ H0. So here is the

situation:

µ(ξ0) = tξ0t
−1 (t ∈ H0)(80)(a)

µ(x) = x(80)(b)

ξ = gξ0g
−1(80)(c)

B = g−1B0g(80)(d)

By (b) we have

(80)(e) µ(ξ) = h−1ξh (some h ∈ H0).

By (c) and (e) µ(gξ0g
−1) = h−1(gξ0g

−1)h, and by (a) this implies

(80)(f) g−1hµ(g)t ∈ K0.
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Now

(81)
Stab

K
†
0

(B) = Stab
K

†
0

(g−1B0g)

= g−1(Stab
gK

†
0
g−1(B0))g.

Recall K†
0 = StabG†(ξ0), so gK†

0g
−1 = StabG†(ξ) = K†

ξ (cf. (79)). There-
fore

(82) Stab
K

†
0

(B) = g−1(Stab
K

†
ξ

(B0))g.

Lemma 83 With h ∈ H0 as in (80)(e) we have:

(84) Stab
K

†
ξ

(B0) = 〈Hθx

0 , hǫ〉.

Remark 85 Note that the second term is contained in H0ǫ.

Proof. The first term is the usual. For the second,

(86)

(hǫ)B0(hǫ)
−1 = hµ(B0)h

−1

= hB0h
−1 (since µ is distinguished)

= B0 (since h ∈ H0 ⊂ B0).

Also

(87)

(hǫ)ξ(hǫ)−1 = hµ(ξ)h−1

= h(h−1ξh)h−1 (by (80)(e))

= ξ

so hǫ ∈ K†. �

Lemma 88

(89) Stab
K

†
0

(B) = 〈Hθx0 , g−1hµ(g)ǫ〉.

This is immediate from the previous Lemma, since g−1(hǫ)g = g−1hµ(g)ǫ.
Note that g−1hµ(g)ǫ ∈ K†

0 (this is obvious, but’s let’s double-check just to
make sure):

(90)

(g−1hµ(g)ǫ)ξ0(g
−1hµ(g)ǫ)−1 = g−1hµ(g)µ(ξ0)(g

−1hµ(g))−1

= g−1hµ(g)tξ0t
−1(g−1hµ(g))−1

= (g−1hµ(g)t)ξ0(g
−1hµ(g)t)−1 = ξ0

where the last equality is by (80)(f). Also note that g−1hµ(g)ǫ = (g−1hg)(g−1ǫg) ∈
H(g−1ǫg), but this is not necessarily in Hǫ.
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11 Parameters for (g, K†)-modules

As in Section 6 fix ξ0 and let θ0 = θξ0 , K0 = Kξ0 . Assume µ(ξ0) = ξ0.
As in the previous section fix x ∈ X with µ(x) = x. Choose ξ lying over

x. As in Lemma 83 we have

(91) Stab
K

†
ξ
(B0) = 〈Hθx

0 , hǫ〉

where h ∈ H0 satisfies µ(ξ) = h−1ξh (cf. (80)(e)).

Suppose (λ0, κ0) is an (h0, H̃
θx

0 )-module. Recall (Section 6) κ0 ∈ ρ +

X∗(H0). Note that µ acts on (h0, H̃
θx

0 ) (for the cover this uses that µ is
distinguished) and (λ0, κ0)

µ = (µ†(λ0), µ
†(κ0)).

This is as far as I’ve gotten for now. . .

Never mind the cover, an (h, 〈Hθx

0 , hǫ〉)-module (which restricts irreducibly)
is an (h, Hθx

0 )-module (λ0, κ0), together with a complex number z satisfying

(92) z2 = κ0(hµ(h)).

We need to figure out nice parameters for this. We then need to incorpo-
rate the ρ-cover of H . Finally (recall Stab

K
†
0

(B) = 〈Hθx0 , g−1hµ(g)ǫ〉) we’ll

conjugate to get an (h, 〈Hθx0 , g−1hµ(g)ǫ〉)-module (some cover of this).
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