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1. Introduction

This research was supported by NSF grants DMS 0554278 and DMS 0201944.
The goal of this paper is to present some recent progress on the classification

of the unitary genuine irreducible representations of the metapectic group. The
focus is on Langlands quotients of genuine minimal principal series of Mp(2n); our
main result is an embedding of the set of unitary parameters of such representa-
tions into the union of spherical unitary parameters for certain split orthogonal
groups. The latter are known from [Ba1], hence we obtain the non-unitarity of a
large (conjecturally complete) set of parameters for Langlands quotients of genuine
principal series of Mp(2n). For the pseudospherical case, this result already ap-
pears in [ABPTV]. The authors of [ABPTV] prove that a similar embedding holds
for all nontrivial coverings of simple split groups, but they restrict their attention
to the pseudospherical case. In this paper, the emphasis is exclusively on Mp(2n),
but the pseudospherical restriction is removed. In the specific example of the pseu-
dospherical principal series of Mp(2n), the embedding in [ABPTV] turns out to be
a bijection. We conjecture that this result holds for all genuine principal series of
Mp(2n), and provide some evidence for this claim.

Let G = Mp(2n) be the (unique) nontrivial two-fold cover of the symplectic
group Sp(2n,R). Choose a minimal parabolic subgroup of Sp(2n,R), and let MA
be the inverse image of its Levi factor in Mp(2n). Then M is a finite abelian group
of order 2n+1 and A is a vector group. For every irreducible representation δ of
M and every character ν of A, we choose a nilpotent group N such that MAN is
the inverse image of a minimal parabolic subgroup of Sp(2n,R), and ν is weakly
dominant for the positive root system determined by N . The representation δ ⊗ ν
of MA can be regarded as a representation of MAN , with N acting trivially. The
corresponding induced representation is a principal series representation ofMp(2n),
denoted

(1.0.1) I(δ, ν) := Ind
Mp(2n)
MAN (δ ⊗ ν).

Note that I(δ, ν) is independent of the choice of N , and is unitary if the character
ν of A is unitary (because we use normalized induction).
We restrict our attention to representations ofMp(2n) that are genuine, in the sense
that they do not factor to Sp(2n,R). It is easy to check that I(δ, ν) is genuine if
and only if the M -type δ does not factor to the appropriate subgroup of Sp(2n,R);
i. e., if δ is a genuine M -type. Every genuine representation δ of M is contained in a
unique fine K-type µδ (see Definition 5). The distinguished irreducible composition
factor of I(δ, ν) containing µδ is a Langlands quotient of Mp(2n), denoted J(δ, ν).
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We are interested in the set of parameters ν for which the irreducible representa-
tion J(δ, ν) is unitary. Note that ν is real if and only if J(δ, ν) has real infinitesimal
character. By a result of Vogan (see [Kn], Theorem 16.10), any unitary repre-
sentation with nonreal infinitesimal character is unitarily induced from a unitary
representation with real infinitesimal character on a proper Levi subgroup. Hence
we will (as we may) assume that ν is real.
We call the set

(1.0.2) CS(Mp(2n), δ) := {ν ∈ a∗
R
| J(δ, ν) is unitary}

the δ-complementary series of Mp(2n). By work of Knapp and Zuckerman, every
genuine Langlands quotient J(δ, ν) admits a Hermitian form which is invariant
under the action of the group; the δ-complementary series of Mp(2n) consists of all
the parameters ν which make this form (positive) definite.
To better describe the results we need to introduce some notation. The Weyl group

W of Mp(2n) acts on the set M̂ of genuine irreducible representations of M , and
on the set a∗

R
of real characters of A. Because

(1.0.3) ω · CS(Mp(2n), δ) = CS(Mp(2n), ω · δ) ∀ω ∈W,

the δ-complementary series of Mp(2n) is invariant under the action of the stabi-
lizer W δ of δ in W . Equation (1.0.3) also shows that it is sufficient to compute the

complementary series associated to a singleM -type in each orbit of M̂ under the ac-
tion of the Weyl group. W -orbits of genuine M -types of Mp(2n) are parameterized
by pairs of non-negative integers (p, q) with p + q = n; the selected representa-
tive in the (p, q)-orbit will be denoted δp,q. We prove that the δp,q-complementary
series of Mp(2n) embeds into the product of the spherical complementary series
CS(SO(p + 1, p)o, δ0) of SO(p + 1, p)o with the spherical complementary series of
SO(q + 1, q)o. Here is a more precise statement of the result:

Theorem 1. Let G = Mp(2n) and let ν = (ν1, . . . , νn) be a real character of A.
For each pair of non-negative integers p, q such that p + q = n, write ν = (νp|νq)
with

(1.0.4) νp := (ν1, . . . , νp) and νq := (νp+1, . . . , νn).

If the spherical Langlands quotient J(δ0, νp) of SO(p + 1, p)0 and/or the spherical
Langlands quotient J(δ0, νq) of SO(q + 1, q)0 are not unitary, then the genuine
Langlands quotient J(δp,q, ν) of Mp(2n) is also not unitary.

Because the spherical unitary dual of real split orthogonal groups is known (by
work of Barbasch), we obtain explicit non-unitarity certificates for genuine principal
series for Mp(2n). Here is an equivalent formulation of Theorem 1.

Theorem 2. Let G = Mp(2n) and let ν = (ν1, . . . , νn) be a real character of A.
Write ν = (νp|νq), as in (7.2.1). There is a well defined injection

(1.0.5) CS(Mp(2n), δp,q) → CS(SO(p+ 1, p)0, δ0) × CS(SO(q + 1, q)0, δ0)

taking
ν 7→ (νp, νq).

Conjecture 1. The map (1.0.5) is a bijection.

As an example, we give the picture of the spherical unitary duals of SO(2, 1)0
and SO(3, 2)0, and of the δ2,1-complementary series of Mp(6).
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We briefly discuss the relation between Conjecture 1 and the “omega-regular con-
jecture” introduced in [PPS1]. In [PPS1], we defined the notion of an omega-regular
representation for the metaplectic group. Roughly, a representation of Mp(2n) is
omega-regular if its infinitesimal character is at least as regular as that of the os-
cillator representation. Generalizing the idea of an admissible Aq(λ)-module of
[Sa], we displayed a family of unitary omega-regular representations called Aq(Ω)-
modules, and conjectured that these modules exhaust the genuine omega-regular
unitary dual of Mp(2n).
If π is an irreducible principal series representation of the metaplectic group, then
π is an Aq(Ω)-module if and only if it is an even oscillator representation. Then,
for principal series representations, the “omega-regular conjecture” states that a
genuine omega-regular irreducible principal series representation of Mp(2n) is uni-
tary if and only if it is an even oscillator representation. This result follows from
Theorem 2. Hence, we obtain the following corollary.

Corollary 1. The “omega-regular conjecture” is true for all principal series rep-
resentations.
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In addition, for genuine non-unitary omega-regular principal series representa-

tions, we obtain non-unitarity certificates on specific petite Ũ(n)-types, which pro-
vide an important ingredient for proving the general conjecture. A complete proof
of the “omega-regular conjecture” will appear in a separate paper [PPS2].

The technique used in the proof of Theorem 1 follows Barbasch’s idea to use
calculations on petite K-types to compare unitary parameters for different groups.
For each genuine M -type δ, let ∆δ be the system of good roots for δ, as in Section
3.4, and let Gδ be the connected real split group whose root-system is dual to ∆δ.
If δ = δp,q, then

(1.0.6) ∆δ is a root system of type Cp × Cq,

and Gδ = SO(p + 1, p)0 × SO(q + 1, q)0. Theorem 2 asserts that the set of uni-
tary parameters for a (Hermitian) genuine Langlands quotient J(δ, ν) of Mp(2n)
embeds into the set of unitary parameters for a (Hermitian) spherical Langlands
quotient of Gδ. Associated to δ, there is a family of Hermitian intertwining oper-
ators T (w0, µ, δ, ν), one for each K-type µ, with the property that the Langlands
quotient J(δ, ν) is unitary if and only if

T (w0, µ, δ, ν) is positive semi-definite, for all µ ∈ K̂.

The domain of the operator T (w0, µ, δ, ν), i. e., the space Vµ[δ] := HomM (µ, δ),
carries a representation of the stabilizer W δ of δ in W . If the K-type µ is petite
(see Definition 5), the operator T (w0, µ, δ, ν) depends only on the W δ-structure of
Vµ[δ], and behaves like a spherical operator for the group Gδ. Note that for all δ
genuine, W δ coincides with the Weyl group of the system of good roots, hence with
the Weyl group of Gδ. Therefore, this matching of intertwining operators ties the
unitarity of a genuine Langlands quotient J(δ, ν) of Mp(2n) to the unitarity of a
spherical representation of Gδ.

Proving Conjecture 1 amounts to showing that for each pair of parameters

νp ∈ CS(SO(p+ 1, p)0, δ0) and νq ∈ CS(SO(q + 1, q)0, δ0),

the Langlands quotient J(δp,q, (νp|νq)) of Mp(2(p + q)) is unitary. We do this
completely for p + q ≤ 3. For the general case, we produce two large families of
spherical unitary parameters for SO(p + 1, p)0 × SO(q + 1, q)0 which give rise to
δp,q-complementary series ofMp(2(p+q)). One can construct many more examples;
we plan to pursue this in a future paper.

Some comments are in order. Barbasch’s method of computing some intertwin-
ing operators purely in terms of Weyl group representations is central to this paper.
The same technique has proven successful in the past: it was used in [Ba2] to prove
that the spherical unitary dual of a real split group embeds into the spherical uni-
tary dual of the corresponding p-adic split group, and in [ABPTV] to prove that the
pseudospherical unitary dual of nontrivial coverings of split simple groups embeds
into the spherical unitary dual of certain linear groups. Generalizing these ideas to
genuine non-pseudospherical representations is nontrivial, because the intertwining
operators are harder to compute, due to the presence of bad roots.

We give an outline of the paper. Since understanding the techniques used in the
determination of the spherical unitary dual of split real classical groups is crucial
for our argument, we summarize the main results of [Ba2] in Section 2. Section 3 is
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devoted to the structure of the group Mp(2n). The genuine complementary series
of Mp(2n) are introduced in Section 4. In Section 5, we discuss the structure of the
space HomM (µ, δ) and the correspondingW δ-representation. Next, in Section 6, we
review the theory of intertwining operators for minimal principal series of Mp(2n)
and we prove some preliminary results. In Section 7, we explain the role of petite
K-types for producing non-unitarity certificates; and we state the main theorem.
The actual proof of the main theorem is contained in Section 10. In Section 8, we
present some evidence for Conjecture 1. The irreducible representations of Weyl
groups of type C are described in Section 9. Finally, in the appendix, we give an
explicit description of the spherical unitary dual of split groups of type B as in
[Ba1].

Sections 5, 6 and 7 are based on unpublished work of D. Barbasch and the
first author on non-unitarity certificates for non-spherical principal series (for more
general cases than Mp(2n)), cf. [BP]. We thank D. Barbasch for generously sharing
his ideas. In addition, we would like to thank D. Vogan, P. Trapa and D. Ciubotaru
for offering valuable suggestions along the way, and the authors of [ABPTV] for
providing such an interesting inspiration.

2. Spherical unitary dual of real classical split groups.

The purpose of this section is to summarize some of the results we need about
the spherical unitary dual of real split groups. For a more detailed description, the
interested reader can consult [BCP].

Let G be the set of real points of a connected linear reductive group defined over
R. Let K be a maximal compact subgroup of G, let MA be the Levi factor of a
minimal parabolic subgroup of G (with compact part M) and let W be the Weyl
group of G. Assume that G is a split group of rank n, so that MA is isomorphic
to (R×)n and M is isomorphic to (Z/2Z)n.

Theorem 3. (cf. [Vo]) Let δ0 be the trivial M -type, and let ν be a character of A.
Choose a minimal parabolic subgroup P = MAN of G making ν dominant, and let

I(δ0, ν) := IndGMAN (δ0 ⊗ ν ⊗ 1)

be the spherical principal series representation of G induced from ν. Then:

• I(δ0, ν) has a unique irreducible spherical subquotient, denoted J(δ0, ν).
• J(δ0, ν) is equivalent to J(ν′) if and only if ν = wν′, for some w ∈W.
• J(δ0, ν) is Hermitian if and only if wν = ν̄−1, for some w ∈W.

Remark 1. Because A is a vector group, we can interpret the character ν of A as a
complex linear functional on the Lie algebra of A. For the purpose of unitarity, we
can also assume that ν is real (see [Kn], Theorem 16.10, or [BM]). The Hermitian
condition becomes: wν = −ν, for some w ∈W . (The element w can be assumed to
be the long Weyl group element w0.)

Suppose that ν ∈ a∗
R

is dominant and satisfies the condition w0 · ν = −ν, with
w0 the long element in the Weyl group. Then the Langlands quotient J(δ0, ν) is
an irreducible Hermitian spherical representation of G. The unitarity of J(δ0, ν)
depends on the signature of certain intertwining operators. Precisely, there is one
operator

T (w0, µ, δ0, ν) : HomK(Eµ, I(δ0, ν)) → HomK(Eµ, I(δ0,−ν))
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for every irreducible quasi-spherical representation (µ,Eµ) of K. (A K-type µ is
called quasi-spherical if its restriction toM contains the trivialM -type.) The spher-
ical Langlands quotient J(δ0, ν) is unitary if and only if each operator T (w0, µ, δ0, ν)
is positive semi-definite.

By Frobenius reciprocity, we can interpret T (w0, µ, δ0, ν) as an operator on the
space Vµ[δ0] := HomM (µ, δ0) ≃ (E∗

µ)
M . When µ is the trivial K-type, i. e., the fine

K-type µδ0 , the space Vµ[δ0] is one-dimensional, hence the operator T (w0, µ, δ0, ν)
acts on it by a scalar. We normalize the operators so that this scalar is 1. Let

(2.0.7) w0 = sαrsαr−1
· · · sα1

be a minimal decomposition of w0 as a product of simple reflections. The operator
T (w0, µ, δ0, ν) inherits a similar factorization:

(2.0.8) T (w0, µ, δ0, ν) =

r∏

j=1

T (sαj , µ, δ0, νj−1)

with ν0 = ν and νj = sαjsαj−1
· · · sα1︸ ︷︷ ︸

xj

·ν = xj · ν for all j > 1. Every factor

(2.0.9) T (sα, µ, δ0, γ) : Vµ[δ0] → Vµ[δ0]

is an endomorphism of the space Vµ[δ0]. To construct T (sα, µ, δ0, γ), we look at
the SL(2,R)-subgroup Gα associated to α, and we pick a generator Zα for the Lie
algebra of Gα∩K ≃ SO(2). Then, we decompose Eµ as a direct sum of generalized
eigenspaces for dµ(Zα), and let

(2.0.10) Vµ[δ0] =
⊕

k∈N

HomM (Vµ(±2k), δ0)

be the corresponding decomposition of Vµ[δ0]. Here we use N to denote the set of
non-negative integers, and we set Vµ(s) := {v ∈ Eµ | dµ(iZα)v = sv}, for all s ∈ Z.
The α-factor T (sα, µ, δ0, γ) acts on the space HomM (Vµ(±2k), δ0) by the scalar:

(2.0.11) ck(sα, γ) =





1 if k = 0
k∏
j=1

2j−1−〈α̌,γ〉
2j−1+〈α̌,γ〉 if k 6= 0.

Remark 2. Let µ be any quasi-spherical K-type. The eigenvalues of the operator
T (w0, µ, δ0, ν) can vanish only on the reducibility hyperplanes:

(2.0.12) 〈β̌, ν〉 = 2n+ 1 β ∈ ∆+, n ∈ Z.

In the open regions in the complement of this hyperplane arrangement, the principal
series I(δ0, ν) is irreducible (hence equal to J(δ0, ν)) and the operators T (w0, µ, δ0, ν)
have constant signature. In particular, if ν belongs to the fundamental alcove

(2.0.13) C0 = {ν ∈ a∗R : 0 ≤ 〈β̌, ν〉 < 1, ∀β ∈ ∆+},
then all the operators T (w0, µ, δ0, ν) are positive definite and J(δ0, ν) is unitary.

The following picture shows the spherical unitary dual of SO(3, 2)0, along with
the reducibility hyperplanes.
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Figure 1. The spherical unitary dual of SO(3, 2)0.

2.0.1. Quasi-spherical petite K-types. Let µ be a quasi-sphericalK-type. The Weyl
group W acts on the space

Vµ[δ0] := HomM (µ, δ0) ≃ (E∗
µ)
M

by:

(2.0.14) w · T (v) = T (µ(σ−1v)) ∀ v ∈ Eµ, T ∈ Vµ[δ0], w ∈W.

(Here σ denotes a representative for w in the normalizer of A in K.)

Definition 1. A quasi-spherical K-type is called petite if it is level less than or
equal to 2.

(The definition of level is recalled in Section 5.) If µ is petite, the intertwining
operator T (w0, µ, δ, ν) can be computed by means of Weyl group calculations, and
depends only on the W -representation on Vµ[δ0]. To make this precise, we need to
introduce some notation.

Notation. Let

(2.0.15) w0 = sβr · · · sβ2
sβ1

be a minimal decomposition of w0 into simple reflections in W . For each W -type
ψ, and each (real) character ν of A, set:

(2.0.16) A(w0, ψ, ν) :=

r∏

j=1

A(sβj , ψ, νj−1)

with ν0 = ν, νj = sβjsβj−1
· · · sβ1

· ν for j > 1, and

(2.0.17) A(sβj , ψ, νj−1) :=
Id+ 〈β̌j , νj−1〉ψ(sβj )

1 + 〈β̌j , νj−1〉
.

Theorem 4. [Ba2] Let µ be a quasi-spherical K-type, and let ψµ be the represen-
tation of W on the space

(2.0.18) Vµ[δ0] := HomM (µ, δ0) ≃ (E∗
µ)M .
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If µ is petite, the intertwining operator T (w0, µ, δ0, ν) depends only on the W -
structure of Vµ[δ0]. Precisely:

(2.0.19) T (w0, µ, δ0, ν) = A(w0, ψµ, ν),

for all ν ∈ a∗
R
.

Remark 3. Let G(F) be the split p-adic group corresponding to the root system of
G. For each ν ∈ a∗

R
, let IG(F)(ν) be the principal series of G(F) induced from ν and

let JG(F)(ν) be its unique irreducible subquotient. Assume that w0 · ν = −ν, so that
JG(F)(ν) is Hermitian. The operators

(2.0.20) {A(w0, ψ, ν) | ψ ∈ Ŵ}
are exactly the intertwining operators needed to determine the unitarity of JG(F)(ν):
the spherical Langlands quotient JG(F)(ν) is unitary if and only if

(2.0.21) A(w0, ψ, ν) is positive semi-definite ∀ψ ∈ Ŵ .

(To be precise, we should mention that the operators A(w0, ψ, ν) are actually
operators for the Hecke algebra associated to G(F). See [BCP] for details.)

2.0.2. Relevant W -types. The set of relevant W -types is a minimal set of W -types
which is sufficient to detect unitarity for p-adic spherical Langlands quotients.

Definition 2. [ABPTV] A set Σ ⊂ Ŵ detects spherical unitarity if each Hermitian
spherical Langlands quotient JG(F)(ν) is unitary if and only if

(2.0.22) A(w0, ψ, ν) is positive semi-definite ∀ψ ∈ Σ.

Theorem 5. [Ba1], [Ba2] For split groups G of type Bn or Cn, the following sets
of W -types are relevant:

(2.0.23) {(n−m,m) × (0) : 0 ≤ m ≤ [n/2]} ∪ {(n−m) × (m) : 0 ≤ m ≤ n}.
The labeling of Ŵ is the standard labeling by partitions and pairs of partitions (see
Section 9).

Theorem 6. [Ba2] Let G be a real split group, with Weyl group W . For every
relevant W -type ψ, there exists a quasi-spherical petite K-type µ such that

(2.0.24) T (w0, µ, δ0, ν) = A(w0, ψ, ν)

for all ν ∈ a∗
R
.

This matching of operators allows us to compare spherical unitary parameters
for G and G(F).

2.0.3. An embedding of spherical unitary duals. Suppose that J(δ0, ν) is a Hermit-
ian spherical Langlands quotient for a real split group G. If J(δ0, ν) is unitary,
then the operator T (w0, µ, δ0, ν) is positive semi-definite for every quasi-spherical
K-type µ. In particular

(2.0.25) T (w0, µ, δ0, ν) is positive semi-definite for all µ ∈ K̂ petite.

Theorem 6 implies that

(2.0.26) A(w0, ψ, ν) is positive semi-definite for all ψ ∈ Ŵ relevant.

Because relevant W -types detect spherical unitarity for p-adic split groups, we de-
duce that the Hermitian spherical Langlands quotient JF(ν) (of G(F)) is unitary.
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Hence the set of spherical unitary parameters for the real group G embeds in the
corresponding set for the p-adic group G(F). (Barbasch has proved that this em-
bedding of spherical unitary duals is actually an equality for classical split groups.)

Theorem 7. [Ba2]The spherical unitary dual of a classical split group is indepen-
dent of the field.

Corollary 2. Let G be a real split classical group, with Weyl group W and long
Weyl group element w0. A Hermitian spherical Langlands quotient J(δ0, ν) of G is
unitary if and only if

(2.0.27) A(w0, ψ, ν) is positive semi-definite for all ψ ∈ Ŵ relevant.

Corollary 3. Quasi-spherical petite K-types detect unitarity for spherical Lang-
lands quotients of real split classical groups.

3. The structure of Mp(2n)

Let G = Mp(2n) be the connected double cover of the real split group

(3.0.28) Sp (2n,R) =

{
g ∈ GL (2n,R) : gt

(
0 In

−In 0

)
g =

(
0 In

−In 0

)}
,

with In the n× n identity matrix. We denote by g0 the Lie algebra of G:

(3.0.29) g0 = sp(2n,R) =

{(
A B
C −AT

)
: B and C are symmetric

}
,

and by g its complexification. Let k0 be the maximal compact Cartan subalgebra
of g0 corresponding to the Cartan involution θ(X) = −Xt:

(3.0.30) k0 =

{(
A B
−B A

)
: A is skew-symmetric, and B is symmetric

}
,

and let K be the corresponding maximal compact subgroup of G. Notice that k0 is
isomorphic to u(n) via

(3.0.31)

(
A B
−B A

)
7→ A+ iB,

and that K is isomorphic to Ũ(n) (the connected double cover of U (n)). We
identify K with a subgroup of U(n) × U(1):

(3.0.32) K = {[g, z] ∈ U(n) × U(1) : det(g) = z2},
and k0 with a subalgebra of u(n) ⊕ u(1) :

(3.0.33) k0 = {[X, z] ∈ u(n) ⊕ u(1) : tr(X) = 2z} ≃ u(n).

Let a0 be the diagonal Cartan subalgebra of g0, and let A = exp(a0). Here exp
denotes the exponential map in Mp(2n). The restricted roots

(3.0.34) ∆(g0, a0) = {±ǫk ± ǫl}k,l=1...n ∪ {±2ǫk}k=1...n

form a root system of type Cn, which will be denoted ∆. The Weyl group W =
W (∆) can be realized as NK(A)/ZK(A). It is isomorphic to Sn ⋉ (Z/2Z)n, and
consists of all permutations and sign changes on n coordinates.
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3.1. The Groups Gα. For each root α ∈ ∆ we choose a Lie algebra homomor-
phism

(3.1.1) φα : sl(2,R) → g0 = sp(2n,R)

as in (4.3.6) of [Vo]. The image of φα is a subalgebra of g0 isomorphic to sl(2,R).
The corresponding connected subgroups of Sp(2n,R) and Mp(2n) will be denoted
by GLα and Gα respectively. Notice that GLα is always isomorphic to SL(2,R). The
group Gα is the identity component of the inverse image of GLα under the projection
map

(3.1.2) pr : Mp(2n) → Sp(2n,R),

hence Gα is isomorphic to either SL(2,R) or Mp(2). The root α is called “meta-
plectic” if Gα ≃ Mp(2), and “non-metaplectic” if Gα ≃ SL(2,R). Note that α is
metaplectic if and only if is long (see [Ad], Theorem 1.6).

For all α ∈ ∆, we define:

Zα := φα

(
0 1
−1 0

)
(3.1.3)

σα := exp
(π

2
Zα

)
, and(3.1.4)

mα := exp (πZα) = σ2
α.(3.1.5)

The properties of these elements are described in [ABPTV], Section 4. Here we
only recall that:

• Zα ∈ k0, and generates a subalgebra isomorphic to so(2);
• σα ∈ NK(a), and is a representative in K for the root reflection sα;
• mα ∈ M = ZK(a); it has order at most two if α is non-metaplectic, and

order four if α is metaplectic.

Remark 4. The homomorphism φα is unique up to conjugation of sl(2,R) by the
diagonal matrix with entries i and −i. Hence the element Zα is defined only up to
a sign; the elements σα and mα are defined up to inverse. Our choice is as follows:

α Zα σα mα

2ǫk
[
iEk,k,

i
2

] [
iEk,k +

∑
j 6=k Ej,j , e

πi
4

] [
−Ek,k +

∑
j 6=k Ej,j , i

]

ǫk − ǫl [Ek,l − El,k, 0]
[
Ek,l − El,k +

∑
j 6=k,l Ej,j , 1

] [
−Ek,k − El,l +

∑
j 6=k,l Ej,j , 1

]

ǫk + ǫl [i(Ek,l + El,k), 0]
[
i(Ek,l + El,k) +

∑
j 6=k,l Ej,j , 1

] [
−Ek,k − El,l +

∑
j 6=k,l Ej,j , 1

]

Here Ej,k is the matrix with all entries 0, except for the (j, k) entry, which is 1.

3.2. M-types. The centralizer of A in K is denoted M , and consists of all pairs

(3.2.1) {[g, z] ∈ K : g is diagonal with entries ±1, and det(g) = z2}.
It is an abelian group of order 2n+1, isomorphic to Z/4Z × (Z/2Z)

n−1
. We make

the following identifications:

Z/4Z = 〈[diag(−1, 1, 1, . . . , 1), i]〉 = 〈m2ǫ1〉
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and

(Z/2Z)j =

〈[
diag(−1, 1, . . . , 1,−1

j
, 1, . . . , 1), 1

]〉
=

〈
mǫ1−ǫj

〉
, for j = 2, . . . , n.

It is more convenient to describe M in terms of the generators:

(3.2.2) mk := m2ǫk =

[
diag(1, . . . , 1,−1

k
, 1, . . . , 1), i

]
k = 1, . . . , n

and the relations

(3.2.3) m2
k = [I,−1], mkml = mlmk ∀ k, l = 1, . . . , n.

Definition 3. A representation of M is called nongenuine if [I,−1] acts trivially,
and genuine otherwise.

It is easy to see that the group M admits 2n nongenuine one-dimensional repre-
sentations, in which [I,−1] acts trivially and each mk acts by ±1, and 2n genuine
one-dimensional representations, in which [I,−1] acts by −1 and each mk acts by
±i. For every subset S ⊂ {1, 2, . . . , n}, we denote by δ′S the nongenuine represen-
tation satisfying

(3.2.4) δ′S(mk) =

{
−1 if k ∈ S

+1 if k 6∈ S

for all k = 1, . . . , n, and by δS the genuine representation satisfying

(3.2.5) δS(mk) =

{
−i if k ∈ S

+i if k 6∈ S.

Note that

(3.2.6) δ′S ⊗ δ′T = δ′S△T δS ⊗ δT = δ′(S△T )C δS ⊗ δ′T = δS△T .

(The symbol (S △ T ) denotes the symmetric difference of two subsets.)

Definition 4. A genuine irreducible representation δ of M is called pseudospher-
ical if −1 is not an eigenvalue of δ(mα) for any root α ∈ ∆.

Remark 5. Because

(3.2.7) δS(mǫk−ǫl) = δS(m2ǫkm
−1
2ǫl

) = −1 ∀ k ∈ S, l 6∈ S,

there are only two pseudospherical (genuine) M -types: δ∅ and δ{1,...,n}.

The emphasis of this paper is on genuine representations of Mp(2n). Therefore,
we will restrict our attention to genuine M -types.

3.3. The stabilizer of a genuine M-type. The Weyl group W acts on the set
of genuine irreducible representations of M by:

(3.3.1) (sα · δ)(m) := δ(σ−1
α mσα) ∀m ∈M, ∀α ∈ ∆.

If sα · δ ≃ δ, we say that α stabilizes δ. (This condition is equivalent to sα · δ = δ
because δ is one-dimensional.) The stabilizer of δ in W is the subgroup

(3.3.2) W δ := {w ∈W : w · δ ≃ δ}
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of W . Note that, for all 1 ≤ k < l ≤ n,

(3.3.3) s2ǫk · δS = δS and sǫk±ǫl · δS =

{
δS if k, l ∈ S or k, l ∈ SC

δS△{k,l} otherwise.

Therefore, the stabilizer of δS is the subgroup of W generated by the reflections
across the long roots, together with the reflections across the short roots of the
form ǫk ± ǫl with k, l ∈ S, or k, l ∈ SC . If p = #S and q = #SC , this is the Weyl
group of a root system of type Cp × Cq.

Also note that the orbit of δS under the Weyl group consists of all characters δT
with #S = #T .

3.4. Good roots. Let δ be a genuine irreducible representation of M . A root
α ∈ ∆ is called “good” for δ if δ(mα) 6= −1. Otherwise, we say that α is a “bad”
root for δ. The set of good roots for δ will be denoted ∆δ.

Recall that:

(3.4.1)

{
m2ǫk = mk

mǫk−ǫl = mkm
3
l

and δS(mj) =

{
+i if j 6∈ S

−i if j ∈ S.

Therefore:

(3.4.2) ∆δS = {±ǫk ± ǫl : k, l ∈ S or k, l ∈ SC} ∪ {±2ǫk : 1 ≤ k ≤ n}.
If p = #S and q = #SC , this is a root system of type Cp × Cq.

Remark 6. For every genuine M -type δ, the Weyl group of the root system ∆δ

coincides with the stabilizer of δ, which we have denoted W δ.

3.5. K-types. The equivalence classes of irreducible representations of K are pa-
rameterized by highest weights. We will abuse notation and identify each K-type
with its highest weight. If µ = (a1, . . . , an) is a K-type , the coordinates ai are
non-increasing; they belong to Z if µ is non-genuine, and to Z + 1

2 if µ is genuine.

Definition 5 ([ABPTV], Section 4). An irreducible representation µ of K is




pseudospherical

fine

petite

if |γ| ≤





1/2

1

2

respectively, for every root and every eigenvalue γ of dµ(iZα). More generally, we
say that a K-type is level k if |γ| ≤ k for every α and every eigenvalue γ of dµ(iZα).

The level of a K-type is determined by its highest weight, as follows.

Remark 7 ([ABPTV], Section 4). Let µ be a K-type with highest weight λ. Then
µ is level k if and only if

(3.5.1) 〈γ, β̌〉 ≤ k

for every imaginary root β which is either noncompact long, or compact short.

We deduce that a K-type (a1, . . . , an) is petite if and only if

a1 ≤ 2, an ≥ −2 and a1 − an ≤ 2,

and is fine if and only if

a1 ≤ 1, an ≥ −1 and a1 − an ≤ 1.
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3.6. Genuine fine K-types. We list the genuine fine K-types of Mp(2n) and
their restriction to M .

the fine K-type µ
an explicit
realization

of µ

the restriction
of µ to M

an explicit
realization

of the M -types

(1
2 , . . . ,

1
2 ) det1/2 δ∅ δ∅ ↔ C1

(− 1
2 , . . . ,− 1

2 ) det−1/2 δ{1,...,n} δ{1,...,n} ↔ C1

(1/2, . . . , 1/2︸ ︷︷ ︸
1≤ p≤n−1

,−1/2, . . . ,−1/2︸ ︷︷ ︸
q

) Λp(Cn) ⊗ det−1/2 ⊕
#S=q

δS δS ↔ C ∧
j∈SC

ej

Λq(Cn)∗ ⊗ det1/2
⊕

#S=q

δS δS ↔ C ∧
j∈S

fj

Remark 8. The fine K-types ±(1
2 , . . . ,

1
2 ) are pseudospherical.

We have denoted {e1, ..., en} the standard basis of Cn, and by {f1, ..., fn} its
dual basis. The symbol ∧

j∈S
ej denotes the wedge product of the vectors ej, with

j ∈ S, in, say, increasing order. Setting p = 0 or p = n in the last row of the table
provides an alternative description of the pseudospherical fine K-types.

Remark 9. Note that:

• The restriction of a genuine fine K-type to M consists of the W -orbit
of a single M -type. If the K-type is pseudospherical, this orbit is one-
dimensional.

• Every genuine M -type is contained in the restriction to M of a (genuine)
fine K-type. This K-type is unique, and will be denoted µδ. Note that

(3.6.1) µδS = (1/2, . . . , 1/2︸ ︷︷ ︸
p

,−1/2, . . . ,−1/2︸ ︷︷ ︸
q

)

for all S of cardinality q.

3.7. Genuine petite K-types. For all indices a, b, c such that a+ b+ c = n, the
genuine K-type

(3/2, . . . , 3/2︸ ︷︷ ︸
a

, 1/2, . . . , 1/2︸ ︷︷ ︸
b

, −1/2, . . . ,−1/2︸ ︷︷ ︸
c

)

is petite. We obtain another family of genuine petite K-types by dualization.

4. Genuine complementary series of Mp(2n)

Let MA be the Levi factor of a minimal parabolic subgroup of G = Mp(2n), as
in section 3. Choose a genuine representation δ of M , a real character ν of A and
a minimal parabolic subgroup P = MAN ⊂ G making ν weakly dominant. The
induced representation

IP (δ, ν) := IndGP (δ ⊗ ν ⊗ 1)

is a minimal principal series of G.
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Remark 10. The representation IP (δ, ν) is independent of the choice of P (see,
e. g., [SV] Section 2), and will be denoted I(δ, ν).

Let µδ be the unique fine K-type containing δ (as in section 3.6). The repre-
sentation I(δ, ν) has a distinguished composition factor containing the fine K-type
µδ, which we denote J(δ, ν). We are interested in determining all the parameters
ν that make J(δ, ν) unitary.

Notation. Following [ABPTV], we write

(4.0.1) CS(G, δ) := {ν ∈ a∗
R
| J(δ, ν) is unitary}

for the δ-complementary series of G = Mp(2n).

This is a closed set, because unitarity is a closed condition.

Remark 11. The δ-complementary series of G is a W δ-invariant set.

Proof. Recall that J(δ, ν) ≃ J(w · δ, w · ν) for all w ∈ W. If w stabilizes δ, then
J(δ, ν) is unitary if and only if J(δ, w · ν) is unitary. �

As an example, we consider the non-pseudospherical genuine principal series of
Mp(6). For Mp(6), the group M has six inequivalent non-pseudospherical genuine
representations; these M -types fall into two Weyl group orbits, each consisting of
three representations. Note that it is sufficient to consider a single orbit, for the
M -types in the other orbit are obtained by duality.
The picture below shows the δ-complementary series for three non-pseudospherical
genuine M -types in the same W -orbit. Each set is invariant under the action of the
appropriate stabilizer, but none of them is invariant under the action of the full Weyl
group. Conjugation by an element of W\W δ permutes the three complementaty
series.

Figure 2. The three non-pseudospherical complementary series of Mp(6)

If δ is pseudospherical, then the stabilizer of δ is the entire Weyl group, and
the complementary series CS(G, δ) is a W -invariant set. In this case, CS(G, δ) is
completely determined by its restriction to any closed fundamental Weyl chamber:
it suffices to fix any minimal parabolic subgroup P = MAN , study the unitarity
of L(δ, ν) for ν weakly dominant for N and then conjugate this set of (weakly
dominant) unitary parameters by W to determine the entire complementary series.
The advantage of this construction is that one can use the same choice of N (hence
the same intertwining operator) for all ν of interest.

If δ is not spherical or pseudospherical, then the stabilizer of δ is a proper sub-
group of W , and a fundamental domain for the action of W δ extends beyond a
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single closed Weyl chamber. Hence, if we fix a minimal parabolic P = MAN ,
determine the set of unitary parameters that are weakly dominant for N , and then
conjugate this set by W δ, we will not find the entire complementary series. All the
different Weyl chambers in a fundamental domain for the action of W δ should be
considered. Note that each requires a different parabolic, hence a different inter-
twining operator. (If we insist on fixing a parabolic, then all the M -types in the
W -orbit of δ should be be taken into account.)

4.1. Intertwining operators for genuine principal series. For every element
w of the Weyl group, there is a formal intertwining operator

(4.1.1) T (w, δ, ν) : IP (δ, ν) → IP (wδ,wν).

(If ν is weakly dominant, the operator T (w, δ, ν) is analytic in ν, hence well defined.)
For each K-type (µ,Eµ), we obtain an operator

(4.1.2) T (w, µ, δ, ν) : HomK(µ, IP (δ, ν)) → HomK(µ, IP (wδ,wν))

which, by Frobenius reciprocity, can be interpreted as an operator

(4.1.3) T (w, µ, δ, ν) : HomM (µ, δ) → HomM (µ,wδ).

Set Vµ[δ] := HomM (µ, δ), and define Vµ[wδ] similarly. Because the fine K-type µδ
contains every M -type in the W -orbit of δ with multiplicity one, the operator

(4.1.4) T (w, µδ, δ, ν) : Vµδ
[δ] → Vµδ

[wδ]

acts by a scalar. We normalize T (w, δ, ν) by requiring that this scalar is 1.
The structure of the space HomM (µ, δ) is described in details in Section 5. The

action of the operator T (w, µ, δ, ν) on HomM (µ, δ) is presented in Section 6. Here
we only recall the following result.

Proposition. Let δ be a genuine M -type and let ν be a real character of A. Suppose
that ν satisfies:

(4.1.5)

{
〈ν, β〉 6∈ 2Z + 1 for all roots β that are good for δ

〈ν, β〉 6∈ 2Z \ {0} for all roots β that are bad for δ.

Then the operator T (w, µ, δ, ν) has no zero eigenvalues, for every K-type µ con-
taining δ, and for all w ∈ W .

Remark 12. If δ is a pseudospherical irreducible representation of M , then every
root is good for δ. Condition (4.1.5) becomes:

(4.1.6) 〈ν, β〉 6∈ 2Z + 1, ∀β ∈ ∆.

Note that this condition guarantees the invertibility of the spherical intertwining
operator with parameter ν for the real split group SO(n + 1, n)0 corresponding to
the dual root system ∆̌ (see Remark 2). This is to be expected because, if δ is
pseudospherical, results of [ABPTV] tie the unitarity of a pseudospherical Langlands
quotient J(δ, ν) of Mp(2n) with the unitarity of the spherical Langlands quotient
J(δ0, ν) of SO(n+ 1, n)0.
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4.2. Unitarity of genuine Langlands quotients. By work of Knapp and Zuck-
erman, the principal series I(δ, ν) (with ν real) is Hermitian if and only if the long
Weyl group element w0 satisfies

(4.2.1) w0δ ≃ δ and w0ν = −ν.
Because w0 = −Id for type Cn, these conditions are always met. Then the princi-
pal series I(δ, ν) is always Hermitian. The Langlands quotient J(δ, ν) inherits an
invariant Hermitian form, hence is Hermitian as well.

Assume that ν is weakly dominant for the positive root system determined by
N . Then the (formal) operator T (w, δ, ν) is analytic in ν, hence well defined, for
all w ∈ W . When w = w0, the image of T (w, δ, ν) is the distinguished composition
factor of I(δ, ν) containing the fine K-type µδ, which we have denoted J(δ, ν).
The long intertwining operator T (w0, δ, ν) is self-adjoint, and defines an invariant
Hermitian form on the principal series I(δ, ν):

(4.2.2) 〈f, g〉 = (T (w0, δ, ν)f, g)L2(K) ∀ f, g ∈ I(δ, ν).

Every space Vµ[δ] inherits an invariant Hermitian form, via the self-adjoint operator
T (w0, µ, δ, ν). Note that the form on Vµδ

[δ] is positive definite, because the operator
T (w0, µδ, δ, ν) is trivial.

The (possibly degenerate) invariant form 〈·, ·〉 on I(δ, ν) descends to a nonde-
generate invariant form on the quotient of I(δ, ν) by the kernel of the operator
T (w0, δ, ν), which is isomorphic to J(δ, ν). The form on J(δ, ν) is positive definite
if and only if 〈·, ·〉 is positive semi-definite. The following theorem asserts that the
signature can be computed K-type by K-type.

Theorem 8. [ABPTV] J(δ, ν) is unitary if and only if the operator T (w0, µ, δ, ν)
is positive semi-definite, for all K-types µ.

Remark 13. In the open regions in the complement of the hyperplane arrangement
defined by (4.1.5), the principal series I(δ, ν) is irreducible (hence equal to the Lang-
lands quotient J(δ, ν)), and the operators T (w0, µ, δ, ν) have constant signature.

Corollary 4. The Langlands quotient J(δ, ν) is unitary for all ν in the unit cube:

(4.2.3) {(x1, . . . , xn) ∈ a∗R | 0 ≤ |xj | ≤ 1/2, ∀ j = 1, . . . , n}.

Proof. Let P = MAN be a minimal parabolic subgroup of G containing our Levi
subgroupMA and let T be the closed fundamental Weyl chamber determined by N .
Every ν ∈ T is weakly dominant with respect to the positive root system determined
by N , hence all the Langlands quotients J(δ, ν) with ν ∈ T can be constructed using
the same parabolic P (and the same intertwining operator T (w0, δ, ν)).

Write T ′ for the intersection of T with the interior of the cube. We begin by
proving that the Langlands quotient J(δ, ν) is unitary for all ν ∈ T ′. Because

|〈ν, α〉| < 1 ∀α ∈ ∆, ∀ ν ∈ T ′,

every operator T (w0, µ, δ, ν) with µ ∈ K̂ is invertible on T ′, and has constant
signature. When ν = 0, the principal series is unitarily induced, hence unitary. We

conclude that T (w0, µ, δ, ν) is positive semidefinite for all µ ∈ K̂ and all ν ∈ T ′.
This proves the unitarity of J(δ, ν) for all ν ∈ T ′. By varying the choice of N ,
we obtain unitarity for all points in the interior of the cube. The unitarity on the
boundary of the cube is automatic, because unitarity is a closed condition. �
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In Section 7, we provide a set of strong necessary conditions for the unitarity of
genuine Langlands quotients of Mp(2n). A synopsis of the technical background is
presented in sections 5 and 6. Many of the concepts introduced in the next three
sections originated in a joint effort (yet unpublished) by D. Barbasch and the first
author, cf. [BP]. The overarching goal of that program was the development of a
broad class of non-unitarity certificates for non-spherical principal series of double
covers of real split groups. The present paper extends those ideas to Mp(2n).

5. The space HomM (µ, δ)

5.1. An action of the stabilizer of δ on the space HomM (µ, δ). Let (δ, V δ)
be an M -type, and let µδ be a fixed fine K-type containing δ. (The choice of
µδ is unique for δ genuine.) For every K-type (µ,Eµ) containing δ, we define a
representation ψµ of the stabilizer W δ of δ on the space Vµ[δ] := HomM (µ, δ), as
follows.
Because δ appears in µδ with multiplicity one, we can identify the representation
δ with its copy inside µδ|M , and the space V δ with the isotypic component Eµδ

(δ)
of δ in µδ. Let M ′

δ be the preimage of W δ in the normalizer M ′ of A in K, so that
W δ = M ′

δ/M . The group M ′
δ acts on both Eµ(δ) and Eµδ

(δ) by restriction of the
appropriate action of K, hence it acts on

(5.1.1) Vµ[δ] = HomM (µ, δ) = HomM (Eµ, Eµδ
(δ)) = HomM (Eµ(δ), Eµδ

(δ))

by

(5.1.2) σ · T (v) = µδ(σ)T (µ(σ)−1v) ∀ v ∈ Eµ, σ ∈ M ′
δ.

Since M acts trivially, this action of M ′
δ factors to a representation of W δ = M ′

δ/M
on Vµ[δ], which we denote ψµ.

We are interested in the representations that arise from genuine petite K-types.
It is sufficient to consider only one representative for each W -orbit of M -types. For
each pair of non-negative integers (p, q) such that p+ q = n, let δp,q be the unique
genuine representation of M satisfying:

(5.1.3) δp,q(m2ǫk) =

{
+i if k ≤ p

−i if k > p.

(In the notation of Section 3.2, δp,q = δ{p+1,...,n}.) Following [ABPTV], we call

(5.1.4) ΣK(G, δp,q) := {µ ∈ K̂ | µ is petite, and µ|M ⊃ δp,q}
the set of irreducible petite representations of K containing δp,q, and

(5.1.5) ΣW (G, δp,q) := {ψ ∈ ̂(W δp,q) | ψ ⊂ Vµ[δp,q] for some µ ∈ ΣK(G, δp,q)}
the set of irreducible representations of W δp,q ≃ W (Cp) × W (Cq) that can be
realized on the space HomM (µ, δp,q) for some petite K-type µ.
Recall the notion of relevant representation from Theorem 5.

Proposition 1. The set ΣW (G, δp,q) contains every irreducible relevant represen-
tation of W (Cp) and every irreducible relevant representation of W (Cq).
The precise matching is as follows:
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(5.1.6)

the relevant W δp,q -type ψ a petite K-type µ such that Vµ[δp,q] = ψ

((p− s) × (s)) ⊗ triv
1

2
, . . . ,

1

2︸ ︷︷ ︸
p−s

,−1

2
, . . . ,−1

2︸ ︷︷ ︸
q

,−3

2
, . . . ,−3

2︸ ︷︷ ︸
s

(p− s, s) ⊗ triv




3

2
, . . . ,

3

2︸ ︷︷ ︸
s

,
1

2
, . . . ,

1

2︸ ︷︷ ︸
p−2s

,−1

2
, . . . ,−1

2︸ ︷︷ ︸
q+s




triv ⊗ ((q − r) × (r))
3

2
, . . . ,

3

2︸ ︷︷ ︸
r

,
1

2
, . . . ,

1

2︸ ︷︷ ︸
p

,−1

2
, . . . ,−1

2︸ ︷︷ ︸
q−r

triv ⊗ (q − r, r)




1

2
, . . . ,

1

2︸ ︷︷ ︸
p+r

,−1

2
, . . . ,−1

2︸ ︷︷ ︸
q−2r

,−3

2
, . . . ,−3

2︸ ︷︷ ︸
r




The proof of Proposition 1 is given in Section 10.

5.2. The structure of the space HomM (µ, δ). For each root α ∈ ∆, we define
an action of (Zα)2 on Eµ via (dµ(Zα))2. The decomposition of Eµ into (Zα)2-
generalized eigenspaces induces a decomposition of the space

(5.2.1) Vµ[δ] := HomM (µ, δ).

If µ is petite and α is good for δ, this decomposition coincides with the decomposi-
tion of Vµ[δ] into (±1)-eigenspaces for the action of ψµ(sα), with ψµ the represen-
tation of W δ on Vµ[δ] introduced in Section 5.1.

5.2.1. An action of (Zα)2 on Eµ. Let δ be a genuine irreducible representation of
M and let (µ, Eµ) be a K-type containing δ. For each root α, we choose an element
Zα ∈ k as in Section 3.1. Recall that:

(1) Zα generates a subalgebra isomorphic to so(2)
(2) σα := exp(π2 Zα) is a representative in K for the root reflection sα
(3) mα := exp(π Zα) belongs to M , and satisfies m2

α = [I,−1] if α is metaplec-
tic and m2

α = [I, 1] otherwise.

Because

exp (4π dµ(Zα)) = µ(m4
α) = Id,

the element (iZα) acts on Eµ with half-integer eigenvalues. (The eigenvalues lie in
Z + 1

2 if α is metaplectic, and in Z otherwise.) For all k ∈ Z/2, let Vµ(k) be the
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generalized eigenspace of dµ(iZα) with eigenvalue k:

(5.2.2) Vµ(k) := {v ∈ Eµ | dµ(iZα)v = kv}.

The space

(5.2.3) Vµ(±k) := Vµ(k) + Vµ(−k)

is stable under the action ofM (because Ad(m)Zα = ±Zα, ∀m ∈M), and coincides
with the generalized eigenspace of eigenvalue (−k2) for the action of Z2

α on Eµ via
(dµ(Zα))2. Therefore, we can write:

(5.2.4) Vµ[δ] = HomM (Eµ, δ) =





⊕
k∈N+ 1

2

HomM (Vµ(±k), δ) if α is metaplectic

⊕
k∈N

HomM (Vµ(±k), δ) otherwise.

In case the index k is an integer, its parity is dictated by the following remark.

Remark 14. Let Eµ(δ) be the isotypic component of δ inside µ. If α is non-
metaplectic, the eigenvalues of (dµ(Zα))2 on Eµ(δ) are all even integers if δ(mα) =
1, and all odd integers if δ(mα) = −1.

For further applications, it is convenient to have an explicit description of the
action of σα = exp

(
π
2Zα

)
and mα = exp(πZα) on the space Vµ(±k) ∩ Eµ(δ).

v ∈ Vµ(±k) ∩ Eµ(δ) dµ(Zα)2v µ(σα)v δ(mα)v

k = 0 0 +v +v

k = 2n −(2n)2v (−1)nv +v

k = 2n+ 1 −(2n+ 1)2v 1
2n+1 (−1)ndµ(Zα)v −v

k = 2n+ 1
2 −

(
2n+ 1

2

)2
v

[
e(2n+ 1

2 )
π
2
i
]
v +i v

[
e−(2n+ 1

2 )
π
2
i
]
v −i v

k = 2n+ 3
2 −

(
2n+ 3

2

)2
v

[
e−(2n+ 3

2 )
π
2
i
]
v +i v

[
e(2n+ 3

2 )
π
2
i
]
v −i v



20 ALESSANDRA PANTANO, ANNEGRET PAUL, AND SUSANA A. SALAMANCA-RIBA

To prove these formulas, we observe that if v is a nonzero vector in Vµ(±k)∩Eµ(δ)
and k 6= 0, then

µ(exp(tZα))v = exp(t dµ(Zα))v =
∞∑
n=0

1
n! t

n [dµ(Zα)]
n
v

=
∞∑
n=0

1
(2n)! t

2n [dµ(Zα)]
2n
v︸ ︷︷ ︸

(−k2)nv

+
∞∑
n=0

1
(2n+1)! t

2n+1 [dµ(Zα)]
2n+1

v︸ ︷︷ ︸
(−k2)ndµ(Zα)v

=

[
∞∑
n=0

1
(2n)!(−1)n(kt)2n

]
v + 1

k

[
∞∑
n=0

1
(2n+1)! (−1)n(kt)2n+1

]
dµ(Zα)v

= cos(kt)v + 1
k sin(kt)dµ(Zα)v

for all t ∈ R. For t = π/2 and t = π, we obtain:

(5.2.5)





µ(σα)v = cos
(π

2
k
)
v +

1

k
sin

(π
2
k
)

dµ(Zα)v

µ(mα)v = cos(π k)v +
1

k
sin(π k)dµ(Zα)v.

If k = 0, the same calculation shows that µ(exp(tZα))v = v + t dµ(Zα)v.

Remark 15. Two different eigenvalues for Zα in Vµ must differ by an even integral
multiple of i; therefore, if k ∈ Z + 1

2 , then at most one of Vµ(±k) ∩ Eµ(δ) can be
non-zero. Consequently, we have that if α is a good root for δ, i. e., if δ(mα) 6= −1,
then σα acts on each space Vµ(±k) ∩ Eµ(δ) by a scalar.

5.3. Genuine petite K-types. Let (µ,Eµ) be a petite K-type containing δ and
let α be a good root for δ. The action of (Zα)2 on Eµ induces a decomposition of
the space Vµ[δ], as in equation 5.2.4. We claim that this is also the decomposition
of Vµ[δ] as a direct sum of (±1)-eigenspaces for ψµ(sα). Precisely:

Vµ[δ] = HomM (Vµ(±1/2), δ)︸ ︷︷ ︸
(+1)-eigenspace of ψµ(sα)

⊕HomM (Vµ(±3/2), δ)︸ ︷︷ ︸
(-1)-eigenspace of ψµ(sα)

if α is metaplectic, and

Vµ[δ] = HomM (Vµ(0), δ)︸ ︷︷ ︸
(+1)-eigenspace of ψµ(sα)

⊕ HomM (Vµ(±2), δ)︸ ︷︷ ︸
(-1)-eigenspace of ψµ(sα)

if α is non-metaplectic.
We give a proof by direct computation. Identify Vµ[δ] with the space

HomM (Eµ(δ), Eµδ
(δ))

and define

(ψµ(sα)T )(v) = µδ(σα)T
(
µ(σ−1

α )v
)

∀T ∈ Vµ[δ], v ∈ Eµ(δ),

as in Section 5.1. Then

Eµ(δ) =

{
[Eµ(δ) ∩ Vµ(±1/2)]⊕ [Eµ(δ) ∩ Vµ(±3/2)] if α is metaplectic

[Eµ(δ) ∩ Vµ(0)] ⊕ [Eµ(δ) ∩ Vµ(±2)] otherwise

because µ has level at most two, and

Eµδ
(δ) =

{
Eµδ

(δ) ∩ Vµδ
(±1/2) if α is metaplectic

Eµδ
(δ) ∩ Vµδ

(0) otherwise
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because µδ is fine. The action of σα on these spaces is by:

µ(σα)

Eµ(δ) ∩ Vµ(±0) +1

Eµ(δ) ∩ Vµ(±2) −1

Eµ(δ) ∩ Vµ(±1/2) e
π
4
εi

Eµ(δ) ∩ Vµ(±3/2) e3
π
4
εi

µδ(σα)

Eµδ
(δ) ∩ Vµδ

(±0) 1

Eµδ
(δ) ∩ Vµδ

(±1/2) e
π
4
εi

for ε = ±1 (depending on δ(mα)). The claim follows.

6. Intertwining operators for genuine principal series of Mp(2n)

We describe the formal intertwining operator T (w, , µ, δ, ν) introduced in Section
4. The reader can consult [PPS1] for more details.

Remark 16. We can identify every M -type in the W -orbit of δ with its unique
copy inside the fine K-type µδ, and think of the operator

(6.0.1) T (w, µ, δ, ν) : Vµ[δ] → Vµ[wδ]

as an endomorphism of the space HomM (µ, µδ).

Let

(6.0.2) w = sαrsαr−1
· · · sα1

be a minimal decomposition of w as a product of simple reflections. The operator
T (w, µ, δ, ν) factors as a product of operators of the form

(6.0.3) T (sα, µ, τ, γ) : Vµ[τ ] → Vµ[sατ ]

with τ an M -type in the W -orbit of δ, and γ an element of a∗
R
. Precisely:

(6.0.4) T (w, µ, δ, ν) =

r∏

j=1

T (sαj , µ, δj−1, νj−1)

with δ0 = δ, ν0 = ν, and

δj = sαjsαj−1
· · · sα1︸ ︷︷ ︸

xj

·δ = xj · δ, νj = sαjsαj−1
· · · sα1︸ ︷︷ ︸

xj

·ν = xj · ν

for j ≥ 1.
We show how to compute a factor T (sα, µ, τ, γ) of this decomposition. Recall from
Section 5.2.1 that the action of (dµ(Zα))2 on Eµ induces a decomposition of the
HomM -spaces. Write:

Vµ[τ ] =





⊕
k∈2N

HomM (V αµ (±k), τ) if α is non-metaplectic and good for τ

⊕
k∈2N+1

HomM (V αµ (±k), τ) if α is non-metaplectic and bad for τ

⊕
k∈N+1/2

HomM (V αµ (±k), τ) if α is metaplectic

and decompose Vµ[sατ ] similarly. The operator

T (sα, µ, τ, γ) : Vµ[τ ] → Vµ[sατ ]
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maps

HomM (V αµ (±k), τ) → HomM (V αµ (±k), sατ)
for all k ∈ N/2, via

F 7→ dk(α, γ)µδ(σα)(F ◦ µ(σ−1
α )).

The constant dk(α, γ) depends on the half-integer k and on the inner product
λ = 〈γ, α̌〉. Precisely, we have:

(6.0.5) d0(α, γ) = d 1
2
(α, γ) = d1(α, γ) = 1

and

(6.0.6)

d 3
2
+2m(α, γ) = (−1)m+1 (1

2 − λ)(5
2 − λ) · · · (1

2 + 2m− λ)

(1
2 + λ)(5

2 + λ) · · · (1
2 + 2m+ λ)

d 5
2
+2m(α, γ) = (−1)m+1 (3

2 − λ)(7
2 − λ) · · · (3

2 + 2m− λ)

(3
2 + λ)(7

2 + λ) · · · (3
2 + 2m+ λ)

d2m+1(α, γ) = (−1)m
(2 − λ)(4 − λ) · · · (2m− λ)

(2 + λ)(4 + λ) · · · (2m+ λ)

d2m(α, γ) = (−1)m
(1 − λ)(3 − λ) · · · (2m− 1 − λ)

(1 + λ)(3 + λ) · · · (2m− 1 + λ)

for all m > 0.
If the root α is good for τ , the operator T (sα, µ, τ, γ) has a simpler form.

Proposition 2. If α is a good root for τ , then the reflection sα stabilizes τ and

T (sα, µ, τ, γ) : Vµ[τ ] → Vµ[τ ]

is an endomorphism of Vµ[τ ]. It acts on each subspace HomM (V αµ (±k), τ) by a
scalar:

(6.0.7) bk(α, γ) :=





1 if k = 0 or 1/2∏
0≤j≤[(k−1)/2]

(k−1−2j)−〈γ,α̌〉
(k−1−2j)+〈γ,α̌〉 if k > 1/2.

Proof. By assumption, τ is an M -type in the W -orbit of δ. Hence we can identify
τ with its copy inside the fine K-type µδ, and write:

(6.0.8) µδ(σα)|Eµδ
(τ) =

{
1 if τ(mα) = 1

eε
π
4
i if τ(mα) = εi

with ε = ±1. Recall from Section 5.2.1 that

µ(σα)|Vµ(±k)∩Eµ(τ) =





(−1)n if k = 2n and τ(mα) = 1

eε(2n+ 1
2 )

π
2
i if k = 2n+ 1

2 and τ(mα) = εi

e−ε(2n+ 3
2 )

π
2
i if k = 2n+ 3

2 and τ(mα) = εi.

The action of T (sα, µ, τ, γ) on an element T ∈ HomM (Vµ(±k), τ) is then given by:

T (sα, µ, τ, γ) · T = dk(α, γ)µδ(σα)(T ◦ µ(σ−1
α ))

=





(−1)ndk(α, γ)T if k = 2n

e−ε(2n+ 1
2 )

π
2
ieε

π
4
idk(α, γ)T = (−1)ndk(α, γ)T if k = 2n+ 1

2

e+ε(2n+ 3
2 )

π
2
ieε

π
4
idk(α, γ)T = (−1)n+1dk(α, γ)T if k = 2n+ 3

2 .
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This proves the claim because

bk(α, γ) =





(−1)
k
2 dk(α, γ) if k ∈ 2N

(−1)
k+1/2

2 dk(α, γ) if k ∈ 3
2 + 2N

(−1)
k−1/2

2 dk(α, γ) if k ∈ 5
2 + 2N.

�

Remark 17. Suppose that for every positive root β, 〈β, ν〉 is not a non-negative
integer. Then the (formal) operator T (w, δ, ν) is analytic in ν, hence well defined.

We now discuss the invertibility of the operator T (w, µ, δ, ν).

Proposition 3. Choose a minimal decomposition of w in W :

(6.0.9) w = sαrsαr−1
· · · sα1

and write xj := sαjsαj−1
· · · sα1

for all j = 1 . . . r, and x0 = 1. Suppose that

(6.0.10)

{
〈ν, x−1

j−1 · αj〉 6∈ 2N + 1 if x−1
j−1 · αj is good for δ

〈ν, x−1
j−1 · αj〉 6∈ 2N + 2 if x−1

j−1 · αj is bad for δ

for all j = 1 . . . r. Then the operator T (w, µ, δ, ν) has no zero eigenvalues, for every
K-type µ containing δ.

Proof. Decompose T (w, µ, δ, ν) in factors corresponding to simple reflection, as in
equation (6.0.4). Because the map

F 7→ µδ(σαj )(F ◦ µ(σ−1
αj

))

is invertible, the operator T (sαj , µ, δj−1, νj−1) is invertible if and only if

dk(αj , νj−1) 6= 0

for all k ∈ N/2 such that the subspace HomM (V
αj
µ (±k), δj−1) 6= {0}.This condition

is certainly met if we require that:




dk(αj , νj−1) 6= 0, ∀ k ∈ 2N + 2 if αj is non-metaplectic and good for δj−1

dk(αj , νj−1) 6= 0, ∀ k ∈ 2N + 3 if αj is non-metaplectic and bad for δj−1

dk(αj , νj−1) 6= 0, ∀ k ∈ N + 3
2 if αj is metaplectic.

The constants dk are given in equations (6.0.5) and (6.0.6). It is clear that the
above condition is equivalent to:

(6.0.11)





〈νj−1, α̌j〉 6∈ 2N + 1 if αj is non-metaplectic and good for δj−1

〈νj−1, α̌j〉 6∈ 2N + 2 if αj is non-metaplectic and bad for δj−1

〈νj−1, α̌j〉 6∈ N + 1
2 if αj is metaplectic.

It is convenient to rephrase (6.0.11) in terms of δ and ν. Assume j > 1, then

〈νj−1, α̌j〉 = 〈xj−1·ν, α̌j〉 = 〈sαj−1
· · · sα1

·ν, α̌j〉 = 〈ν, sα1
· · · sαj−1

·α̌j〉 = 〈ν, x−1
j−1·α̌j〉.

Moreover, αj is good for δj−1 if and only if x−1
j−1 · αj is good for δ:

sαj ·δj−1 = δj−1 ⇔ sαj ·(xj−1 ·δ) = xj−1 ·δ ⇔ (x−1
j−1sαjxj−1)·δ = δ ⇔ sx−1

j−1
·αj

·δ = δ.

These conditions hold trivially for j = 1, because x0 = Id. Finally, observe that

αj is metaplectic ⇔ αj is long ⇔ x−1
j−1 · αj is long ⇔ x−1

j−1 · αj is metaplectic
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We conclude that the intertwining operator is invertible if

(6.0.12)





〈ν, x−1
j−1 · α̌j〉 6∈ 2N + 1 if x−1

j−1 · αj is non-metaplectic and good for δ

〈ν, x−1
j−1 · α̌j〉 6∈ 2N + 2 if x−1

j−1 · αj is non-metaplectic and bad for δ

〈ν, x−1
j−1 · α̌j〉 6∈ N + 1

2 if x−1
j−1 · αj is metaplectic

for all j = 1 . . . r. There is a more compact form to state this condition. Recall that
every metaplectic root is good for δ and that

β̌ =

{
β if β is non-metaplectic (i. e., short)
1
2β if β is metaplectic (i. e., long)

for all β ∈ ∆. Hence condition (6.0.12) is equivalent to:

(6.0.13)

{
〈ν, x−1

j−1 · αj〉 6∈ 2N + 1 if x−1
j−1 · αj is good for δ

〈ν, x−1
j−1 · αj〉 6∈ 2N + 2 if x−1

j−1 · αj is bad for δ

for all j = 1 . . . r. (Note that this condition is independent of µ.) �

Corollary 5. Suppose that

(6.0.14)

{
〈ν, β〉 6∈ 2Z + 1 for all roots β that are good for δ

〈ν, β〉 6∈ 2Z \ {0} for all roots β that are bad for δ.

Then the operator T (w, µ, δ, ν) has no zero eigenvalues, for every K-type µ con-
taining δ, and for all w ∈ W .

7. Non-unitarity certificates for genuine Langlands quotients

In this section, we discuss the role of petite K-type in the determination of
non-unitarity certificates for genuine Langlands quotients of Mp(2n).

7.1. Operators on genuine petite K-types. Let δ be a genuine M -type. For
every K-type µ containing δ, let ψµ be the representation of W δ on the space
Vµ[δ] := HomM (µ, δ) introduced in Section 5.1. If µ is petite, i. e., is level at most
two, the intertwining operator T (w0, µ, δ, ν) can be computed by means of Weyl
group calculations, and depends only on the W δ-representation Vµ[δ]. To make
this precise, we need to introduce some notation. Recall that the long Weyl group
element w0 stabilizes every M -type. In particular, w0 ∈ W δ.

Notation. Let

(7.1.1) w0 = sβr · · · sβ2
sβ1

be a minimal decomposition of w0 in W δ = W (∆δ). For each W δ-representation ψ
on a space Vψ, and each (real) character ν of A, define the following operators on
Vψ:

(7.1.2) Ǎ(w0, ψ, ν) :=

r∏

j=1

Ǎ(sβj , ψ, νj−1)

with ν0 = ν, νj = sβjsβj−1
· · · sβ1

· ν for j > 1, and

(7.1.3) Ǎ(sβj , ψ, νj−1) :=
Id+ 〈βj , νj−1〉ψ(sβj )

1 + 〈βj , νj−1〉
.
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Theorem 9. Let µ be a genuine K-type containing δ, and let ψµ be the represen-
tation of W δ on the space Vµ[δ] := HomM (µ, δ). If µ is petite, the intertwining
operator T (w0, µ, δ, ν) depends only on the W δ-structure of Vµ[δ]. Precisely:

(7.1.4) T (w0, µ, δ, ν) = Ǎ(w0, ψµ, ν),

for all ν ∈ a∗
R
.

Proof. Both operators in (7.1.4) can be decomposed as a product of operators corre-
sponding to simple reflections. The factorization of T (w0, µ, δ, ν) mimics a minimal
factorization of the long Weyl group element w0 in W , the one of Ǎ(w0, ψµ, ν) mim-
ics a minimal factorization of w0 in W δ. We need to choose these two factorizations
of w0 in a “compatible” fashion. Assume that

(7.1.5) w0 = sβr · · · sβ2
sβ1

is a minimal decomposition of w0 in W δ. For each root β which is simple in W δ,
but not simple in W , we choose a minimal decomposition of sβ in W of the form:

(7.1.6) sβ = (sη1sη2 · · · sηl
)sξ(sηl

· · · sη2sη1)

with

• ξ good for (sηl
· · · sη2sη1)δ, and

• ηj bad for both (sηj−1
· · · sη2sη1)δ and (sηj+1

· · · sηl
sξsηl

· · · sη1)δ.
(Such a decomposition always exists, as the following example illustrates.) We re-
quire that, after replacing every non-simple reflection sβ in (7.1.5) by its expression
in (7.1.6), we obtain a minimal decomposition
(7.1.7)
w0 = sβr · · · (sς1sς2 · · · sςnsζsςn · · · sς2sς1︸ ︷︷ ︸

sβj

)sβi−1
· · · (sη1sη2 · · · sηl

sξsηl
· · · sη2sη1︸ ︷︷ ︸

sβi

) · · · sβ1

of w0 in W . We will prove that:

(a) If β is a good root for δ, and β is simple in both W δ and W , then the β̌-
factor of Ǎ(w0, ψµ, ν) matches the corresponding β-factor of T (w0, µ, δ, ν).

(b) If β is a good root for δ, and β is simple in W δ but not in W , then
the β̌-factor of Ǎ(w0, ψµ, ν) matches the product of the all the factors of
T (w0, µ, δ, ν) coming from the minimal decomposition (7.1.6) of sβ in W .

Here is an example. Refer to Section 3.2 for notation. Let G be Mp(10), and let
δ be the genuine M -type δ{3,4,5}. Note that W and W δ are Weyl groups of type
C5 and C2 × C3, respectively. We choose

{ǫi ± ǫj | 1 ≤ i < j ≤ 5} ∪ {2ǫk | k = 1, . . . , 5}

to be the positive roots in ∆ (with ǫ1 − ǫ2, ǫ2 − ǫ3, ǫ3 − ǫ4, ǫ4 − ǫ5 and 2ǫ5 simple),
and

{ǫ1 ± ǫ2, 2ǫ1, 2ǫ2} ∪ {ǫ3 ± ǫ4, ǫ3 ± ǫ5, ǫ4 ± ǫ5, 2ǫ3, 2ǫ4, 2ǫ5}
to be the positive roots in ∆δ (with ǫ1 − ǫ2, 2ǫ2, ǫ3 − ǫ4, ǫ4 − ǫ5 and 2ǫ5 simple).
The long Weyl group element w0 = −Id has length 13 in W δ and length 25 in W .
In W δ, we decompose it as:

w0 = (sǫ1−ǫ2s2ǫ2sǫ1−ǫ2)s2ǫ2(sǫ3−ǫ4sǫ4−ǫ5s2ǫ5sǫ4−ǫ5sǫ3−ǫ4)(sǫ4−ǫ5s2ǫ5sǫ4−ǫ5)s2ǫ5 .
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Note that 2ǫ2 is the only good root which is simple in ∆δ but not in ∆. We claim
that

(7.1.8) s2ǫ2 = sǫ2−ǫ3sǫ3−ǫ4sǫ4−ǫ5s2ǫ5sǫ4−ǫ5sǫ3−ǫ4sǫ2−ǫ3

is a minimal decomposition of s2ǫ2 in W that satisfies all the required properties.
For all γ ∈ a∗

R
, the matching of operators is as follows:

• If β = 2ǫ5, ǫ1 − ǫ2, ǫ3 − ǫ4 or β = ǫ4 − ǫ5, then

Ǎ(sβ , ψµ, γ) = T (sβ, µ, δ, γ).

• If β = 2ǫ2, then

Ǎ(s2ǫ2 , ψµ, γ) = T (sǫ2−ǫ3 , µ, δ1, sǫ3−ǫ4sǫ4−ǫ5s2ǫ2sǫ4−ǫ5sǫ3−ǫ4sǫ2−ǫ3γ) ◦

◦T (sǫ3−ǫ4 , µ, δ2, sǫ4−ǫ5s2ǫ2sǫ4−ǫ5sǫ3−ǫ4sǫ2−ǫ3γ) ◦

◦T (sǫ4−ǫ5 , µ, δ3, s2ǫ2sǫ4−ǫ5sǫ3−ǫ4sǫ2−ǫ3γ) ◦T (s2ǫ2, µ, δ3, sǫ4−ǫ5sǫ3−ǫ4sǫ2−ǫ3γ) ◦

◦T (sǫ4−ǫ5 , µ, δ2, sǫ3−ǫ4sǫ2−ǫ3γ) ◦T (sǫ3−ǫ4 , µ, δ1, sǫ2−ǫ3γ) ◦T (sǫ2−ǫ3 , µ, δ, γ).

We now give the proof of the theorem.
For part (a), we assume that the root β is good for δ. Recall from Section 5.3

that for every genuine petite K-type µ, the space Vµ[δ] decomposes as:

Vµ[δ] = HomM (Vµ(±1/2), δ)︸ ︷︷ ︸
(+1)-eigenspace of ψµ(sβ)

⊕HomM (Vµ(±3/2), δ)︸ ︷︷ ︸
(-1)-eigenspace of ψµ(sβ)

if β is metaplectic, and

Vµ[δ] = HomM (Vµ(0), δ)︸ ︷︷ ︸
(+1)-eigenspace of ψµ(sβ)

⊕ HomM (Vµ(±2), δ)︸ ︷︷ ︸
(-1)-eigenspace of ψµ(sβ)

if β is non-metaplectic. Because β is good for δ, the operator T (sβ, µ, δ, γ) acts on
each subspace HomM (Vµ(±k), δ) by the scalar bk(β, γ) (see Proposition 2). Recall
that

(7.1.9) bk(β, γ) =





1 if k = 0 or k = 1/2
1/2−〈γ,β̌〉

1/2+〈γ,β̌〉
if k = 3/2

1−〈γ,β̌〉

1+〈γ,β̌〉
if k = 2.

Because

β̌ =

{
β if β is non-metaplectic
1
2β if β is metaplectic,

we can rewrite these constants as:

(7.1.10) bk(β, γ) =

{
1 if k = 0, 1

2 or 1
1−〈γ,β〉
1+〈γ,β〉 if k = 3

2 or 2.

Then for every good root β (metaplectic or not), the operator T (sβ, µ, δ, γ) acts on
Vµ[δ] by:

T (sβ, µ, δ, γ) :

s

(+1)-eigensp. of ψµ(sβ)
s

(−1)-eigensp. of ψµ(sβ)

?

1
?

1−〈γ, β〉
1+〈γ, β〉

s

(+1)-eigensp. of ψµ(sβ)

s

(−1)-eigensp. of ψµ(sβ).
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This is exactly the action of the β̌-factor Ǎ(sβ , ψµ, γ).
For part (b), we assume that the root β is simple in W δ but not in W , and prove

that Ǎ(sβ , ψµ, γ) matches the product of the all the factors of T (w0, µ, δ, ν) coming
from the minimal decomposition

sβ = (sη1sη2 · · · sηl
)sξ(sηl

· · · sη2sη1)
of sβ in W . For brevity of notation, set:

δj := sηj . . . sη1δ ∀ j = 1, . . . , l

γj := sηj . . . sη1γ ∀ j = 1, . . . , l

γ′l := sξsηl
. . . sη1γ and

γ′j := sηj+1
. . . sηl

sξsηl
. . . sη1γ ∀ j = 1, . . . , l − 1.

Then the claim is that

(7.1.11) Ǎ(sβ , ψµ, γ) = T (sη1 , µ, δ1, γ
′
1) ◦ T (sη2 , µ, δ2, γ

′
2) ◦ · · · ◦ T (sηl

, µ, δl, γ
′
l)◦

◦T (sξ, µ, δl, γl) ◦ T (sηl
, µ, δl−1, γl−1) · · · ◦ T (sη2 , µ, δ1, γ1) ◦ T (sη1 , µ, δ, γ).

On the left, we have the operator

(7.1.12) Ǎ(sβ , ψµ, γ) ≡
Id+ 〈γ, β〉ψµ(sβ)

1 + 〈γ, β〉
of Vµ[δ]. On the right, we have a composition of the operators. We point out that
although the product acts on Vµ[δ], the single factors do not:

T (sηj , µ, δj−1, γj−1) : Vµ[δj−1] → Vµ[δj ] j = 1, . . . , l

T (sξ, µ, δl, γl) : Vµ[δl] → Vµ[δl]

T (sηj , µ, δj , γ
′
j) : Vµ[δj ] → Vµ[δj−1] j = 1, . . . , l.

(Here δ0 = δ, and γ0 = γ.) Let us look more closely at these factors. The root ηj is
bad for both δj−1 and δj , and is necessarily non-metaplectic (because metaplectic
roots are good for every genuine M -type). By our hypothesis, µ is level two, so
the only possible eigenvalue of (dµ(Zηj ))

2 on the isotypic components of both δj−1

and δj inside µ is (−1). It follows that the operators T (sηj , µ, δj−1, γj−1) and
T (sηj , µ, δj , γ

′
j) act by:

(7.1.13) T 7→ 1 · µδ(σηj )T µ(σηj )
−1.

This holds true for all j = 1, . . . , l. We are left with the central factor, T (sξ, µ, δl, γl).
The root ξ is good for δl hence (by essentially the same argument used in part a)
the operator T (sξ, µ, δl, γl) acts on Vµ[δl] by:

(7.1.14) T 7→ T + 〈γl, ξ〉µδ(σξ)T µ(σξ)
−1

1 + 〈γl, ξ〉
.

Composing all these operators, we obtain the map:

(7.1.15) T 7→ T + 〈γl, ξ〉µδ(σβ)T µ(σβ)−1

1 + 〈γl, ξ〉
.

Note that
〈γl, ξ〉 = 〈sηl

. . . sη1γ, ξ〉 = 〈γ, sη1 . . . sηl
ξ〉 = 〈γ, β〉,
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and that
µδ(σβ)T µ(σβ)

−1 = ψµ(sβ)T

(because β is a good root for δ). Hence we can rewrite (7.1.15) as

T 7→ T + 〈γ, β〉ψµ(sβ)T
1 + 〈γ, β〉 .

This shows that the composition of operators in (7.1.11) matches the operator
Ǎ(sβ , ψµ, γ), and concludes the proof of the theorem. �

Notation. Let ∆δ be the system of good roots for δ. Define Gδ to be the (classical)
real connected split group corresponding to the root system which is dual to ∆δ.

E. g., if δ = δp,q and ∆δ = Cp × Cq, define Gδ ≃ SO(p+ 1, p)0 × SO(q + 1, q)0.

Proposition 4. If the W δ-type ψµ is relevant, then there is a petite quasi-spherical
K-type τψµ of Gδ such that

(7.1.16) TMp(2n)(w0, µ, δ, ν) = TG
δ

(w0, τψµ , δ0, ν).

The operator on the left is a genuine intertwining operator for Mp(2n), the one on
the right is a spherical intertwining operator for Gδ.

Proof. This follows from Theorems 4, 6 and 9, and from the fact that the β-factor of
the operator Ǎ(w0, ν, δ) for Mp(2n) matches the β̌-factor of the operator A(w0, ν, δ)
for Gδ (compare (7.1.3) and (2.0.17)).

�

7.2. Non-unitarity certificates for genuine Langlands quotients. Because

J(δ, ν) ≃ J(wδ,wν) ∀w ∈W,

it suffices to consider a single M -type in each W -orbit for the action of the Weyl

group on M̂ . (If τ = w · δ, then CS(G, τ) = w · CS(G, δ).)
Orbits of M -types are parameterized by pairs of non-negative integers (p, q) such

that p+q = n. In each orbit, we choose the representative δp,q introduced in Section
5.1. This is the unique genuine irreducible representation of M satisfying

δ(m2ǫk) =

{
+i if k=1,. . . , p

−i if k=p+1,. . . , n.

The corresponding fine K-type is:

µδp,q := (1/2, . . . , 1/2︸ ︷︷ ︸
p

,−1/2, . . . ,−1/2︸ ︷︷ ︸
q

).

For all ν ∈ a∗
R
, there is a Langlands quotient J(δp,q, ν) (the distinguished com-

position factor of the principal series I(δp,q, ν) containing µδp,q). We know that
J(δp,q, ν) is Hermitian for all values of ν, and is unitary if and only if ν satisfies the
condition:

T (w0, µ, δp,q, ν) is positive semi-definite, for all µ ∈ K̂.

Definition 6. [ABPTV] Let Σ ⊂ K̂ be a set of K-types. We say that J(δp,q, ν)
is unitary on Σ if its invariant form is positive semi-definite on the µ-isotypic
component of J(δp,q, ν) for all µ ∈ Σ. Equivalently, J(δp,q, ν) is unitary on Σ if and
only if the operator T (w0, µ, δp,q, ν) is positive semi-definite for all µ ∈ Σ.



UNITARY GENUINE PRINCIPAL SERIES OF THE METAPLECTIC GROUP 29

Note that J(δp,q, ν) is unitary if and only if it is unitary on K̂. Because K̂ is an
infinite set, this condition is hard to check. We will restrict our attention to the
(finite) set ΣK(G, δp,q) of petite K-types containing δp,q.

By Theorem 9, the intertwining operator on a petite K-type matches a spherical
operator for the p-adic split group Gδp,q (F) whose root system is dual to the set
∆δp,q of good roots for δp,q. Because ∆δp,q is a root system of type Cp × Cq (see
Section 3.4), the corresponding real split group is

Gδp,q(R) := SO(p+ 1, p)0 × SO(q + 1, q)0.

Suppose that the Langlands quotient J(δp,q, ν) of G is unitary. Then J(δp,q, ν) is
unitary on ΣK(G, δp,q). By Theorem 9, the Langlands quotient JF(ν) of Gδp,q(F)
is unitary on the set ΣW (G, δp,q) of W δp,q -types that can be realized on the space
Vµ[δp,q] for some µ ∈ ΣK(G, δp,q). (The notation is as in Section 5.1.)
By Proposition 1, the set ΣW (G, δp,q) of W δp,q -types detects spherical unitarity
for Gδp,q (F) (see Definition 2), hence the spherical quotient JF(ν) is unitary. By
Theorem 7, the spherical module for the real split group Gδp,q(R) is also unitary.
The result is an embedding of unitary duals: the δp,q-complementary series of G is
embedded into the spherical unitary dual of SO(p+ 1, p)0 × SO(q + 1, q)0.

Notation. Let CS(SO(p+1, p)0, δ0) and CS(SO(q+1, q)0, δ0) denote the spherical
complementary series of SO(p+ 1, p)0 and SO(q + 1, q)0, respectively.

Theorem 10. Let G = Mp(2n) and let ν = (ν1, . . . , νn) be a real character of
A. For each pair of non-negative integers p, q such that p + q = n, let δp,q be the
genuine representation of M introduced in Section 5.1. Set

(7.2.1) νp := (ν1, . . . , νp) νq := (νp+1, . . . , νn)

and write ν = (νp|νq). The map

CS(Mp(2n), δp,q) → CS(SO(p+ 1, p)0, δ0) × CS(SO(q + 1, q)0, δ0)

ν 7→ (νp, νq)

is a well defined injection.

Corollary 6. Let G = Mp(2n) and let ν = (ν1, . . . , νn) be a real character of A.
Write ν = (νp|νq), as in (7.2.1). If the spherical Langlands quotient J(δ0, νp) of
SO(p+1, p)0 and/or the spherical Langlands quotient J(δ0, νq) of SO(q+1, q)0 are
not unitary, then the genuine Langlands quotient J(δp,q, ν) of Mp(2n) is also not
unitary.

Remark 18. The same result holds if we replace the identity component of each
special orthogonal group by the full special orthogonal group, or even by the full
orthogonal group, because the spherical complementary series are the same.

The unitary spherical spectrum of split groups of type B is known, by work
of D. Barbasch (see [Ba1]). Hence Theorem 10 and Corollary 6 provide a set of
non-unitarity certificates for genuine irreducible representations of Mp(2n). The
following proposition shows the strength of these certificates.

Proposition 5. Let G be Mp(2n) and let ν = (ν1, . . . , νn) be a real character of A.
The complementary series CS(Mp(2n), δp,q) is invariant under conjugation by the
stabilizer of δp,q (which is of the form W (Cp) ×W (Cq)), so we may assume that

ν1 ≥ · · · ≥ νp ≥ 0 and νp+1 ≥ · · · ≥ νn ≥ 0.
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Suppose that any of the following conditions holds:

(1) νp > 1/2
(2) νn > 1/2
(3) νa − νa+1 > 1, for some a with 1 ≤ a ≤ p− 1, or
(4) νa − νa+1 > 1, for some a with p+ 1 ≤ a ≤ n− 1.

Then the genuine Langlands quotient J(δp,q, ν) of Mp(2n) is not unitary.

Proof. This is an immediate consequence of the analogous non-unitarity certificates
for spherical Langlands quotient of O(p+1, p) andO(q+1, q) (see [ABPTV], Lemma
14.6). �

We conclude by stating our main conjecture. (The notation is as in Theorem
10.)

Conjecture 2. Let G be Mp(2n). For each pair of non-negative integers p, q such
that p+ q = n, the map

CS(Mp(2n), δp,q) → CS(SO(p+ 1, p)0, δ0) × CS(SO(q + 1, q)0, δ0)

ν 7→ (νp, νq)

is a bijection.

Some evidence for this conjecture is given in Section 8.

8. Some evidence for Conjecture 2

In light of Theorem 10, proving Conjecture 2 is equivalent to the following.

Conjecture 3. Let G be Mp(2n). For each pair of non-negative integers p, q such
that p+ q = n, let

(8.0.2) νp ∈ CS(SO(p + 1, p)0, δ0) and νq ∈ CS(SO(q + 1, q)0, δ0)

be spherical unitary parameters for SO(p+ 1, p)0 and SO(q + 1, q)0, respectively.
Then the Langlands quotient J(δp,q, (νp|νq)) of Mp(2n) is unitary.

(The notation is as in Theorem 10.)

Remark 19. We may assume p ≥ q, because

(8.0.3) J(δp,q, (νp|νq)) ≃ [J(δq,p, (νq|νp))]∗

and duality preserves unitarity.

In this section we give some evidence for Conjecture 3, including the pseudo-
spherical case, two families of special examples, as well as some low rank cases.

Some of the arguments use Howe’s dual pair correspondence for pairs of the form
(O(p, q), Sp(2n,R)) , with p+ q odd. We start by reviewing some of the results on
dual pair correspondence; the basic references are [Ho], [Prz] and [AB]. See also
Section 14 of [ABPTV].
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8.1. The dual pairs (O(p, q), Sp(2n,R)). Let (G,G′) be a reductive dual pair
in Sp(2N,R); i. e., let G and G′ be reductive subgroups of Sp(2N,R) which are

mutual centralizers. The preimages G̃ and G̃′ of G and G′, respectively, under the
covering map Mp(2N) → Sp(2N,R) form a dual pair inside the metaplectic group.
If ω is one of the oscillator representations of Mp(2N), then the restriction of ω to

G̃ · G̃′ gives rise to a correspondence between irreducible representations of G̃ and

G̃′, by defining

(8.1.1) π ↔ π′ ⇐⇒ Hom eG× eG′(ω, π ⊗ π′) 6= 0.

Here the modules and maps are assumed to be in the category of (g,K) modules.
The correspondence satisfies the following properties.

Theorem 11 (Howe). (1) Condition 8.1.1 defines a bijection between subsets

of the sets of genuine irreducible representations of the groups G̃ and G̃′.
(2) The correspondence gives rise to a well-defined correspondence of infinites-

imal characters.

We will restrict our attention to dual pairs of the form (O(p, q), Sp(2n,R)) with
p+q odd. In this situation, the double cover of Sp(2n,R) is metaplectic; the double

cover of the orthogonal group is linear. Recall that Õ(p, q) has a genuine character
ξ such that the map π ↔ π ⊗ ξ gives a bijection between irreducible representa-

tions of O(p, q) and genuine irreducible representations of Õ(p, q). Consequently,
we can regard the theta correspondence for this dual pair as a correspondence be-
tween irreducible representations of O(p, q) and irreducible genuine representations
of Mp(2n).

In general, the theta correspondence does not preserve unitarity. However, we
have preservation of unitarity in the stable range, which we define here only for
dual paris of the form under consideration.

Definition 7. The dual pair (O(p, q), Sp(2n,R)) is said to be in the stable range
with O(p, q) the smaller member if n ≥ p+q. It is in the stable range with Sp(2n,R)
the smaller member if min{p, q} ≥ 2n.

Theorem 12 (Li [Li]). Suppose (G,G′) is a dual pair in the stable range with G

the smaller member. If π is an irreducible genuine unitary representation of G̃,
then π occurs in the dual pair correspondence. Moreover, if π corresponds to π′ in

the dual pair correspondence, then π′ is a unitary representation of G̃′.

We will apply this theorem to dual pairs of the form (O(m+ 1,m), Sp(2n,R))
which are in the stable range with the orthogonal group the smaller member, i. e., to
dual pairs (O(m+ 1,m), Sp(2n,R)) satisfying n ≥ 2m+ 1.

Given a dual pair (G,G′), write K and K ′ for the maximal compact subgroups

of G̃ and G̃′, respectively. Howe associates to each K- and K ′-type a degree, and
defines a subspace H of the representation space for ω, called the space of joint
harmonics, on which there is a one-one correspondence between K- and K ′-types.
The following result is a valuable tool in determining the dual pair correspondence
explicitly.

Theorem 13 (Howe [Ho]). Suppose that π corresponds to π′ in the correspondence
for the dual pair (G,G′), and that µ is a K-type of minimal degree occurring in π.
Then µ occurs in H. Let µ′ be the K ′-type corresponding to µ in H; then µ′ occurs
in π′, and is of minimal degree.
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Recall that the orthogonal group O(p, q) has four one-dimensional characters,
which we will denote triv, det, χ+−, and χ−+. Here χ+− represents the character
which restricts to triv ⊗ det on O(p) ×O(q); χ−+ is defined analogously. For dual
pairs of the form (O(n+ 1, n), Sp(2m,R)), the correspondence of K-types on the
space of joint harmonics is such that

triv ↔ µδm,0(8.1.2)

triv ⊗ det↔ µδm−n,n .(8.1.3)

The trivial (O(n+ 1)×O(n))-type occurs for all dual pairs, while triv⊗ det occurs
whenever m ≥ n.

8.2. Pseudospherical unitary representations of Mp(2n). Recall that a pseu-

dospherical representation of Mp(2n) is a representation containing a Ũ(n)-type of

the form det±
1
2 . Adams and Barbasch [AB] have determined the theta correspon-

dence explicitly, in terms of Langlands parameters, for all dual pairs of the form
(O(p, q), Sp(2n,R)) with p+ q = 2n+ 1. If q = p− 1 = n, they show that spheri-
cal representations of O(n+ 1, n) correspond to pseudospherical representations of

Mp(2n) with lowest Ũ(n)-type
√
det:

(8.2.1) JO(n+1,n)(δ0, ν) ↔ JMp(2n)(δn,0, ν)

for all choices of ν allowed. The main result of [ABPTV] implies that the corre-
spondence (8.2.1) preserves unitarity from right to left. (Note that this result also
follows from our Theorem 10, since O(n + 1, n) and SO(n + 1, n)0 have the same
spherical unitary parameters.)

Computations on petite K-types show that unitarity is preserved in the reverse
direction, as well. This implies the truth of our conjecture in the pseudospherical
case.

Theorem 14. [ABPTV] The correspondence (8.2.1) preserves unitarity both ways;
hence, it gives a parametrization of the pseudospherical unitary dual of Mp(2n) in
terms of the spherical unitary dual of O(n+ 1, n).

8.3. A family of non-pseudospherical examples. For each non-negative inte-
ger m, let ρm be the the m-tuple

(8.3.1) ρm =

(
m− 1

2
,m− 3

2
, . . . ,

3

2
,
1

2

)
,

i. e., the infinitesimal character of the trivial representation of O(m + 1,m), and
of the oscillator representation of Mp(2m). If η is an n-tuple of numbers, then we
denote (ρm|η) the (n+m)-tuple obtained by adding the entries of η to ρm.

Theorem 15. The representation JMp(2(p+q))(δp,q, (ρp|ν)) is unitary, for all ν ∈
CS(SO(q + 1, q)0, δ0) and all p > q.

Proof. The main theorem of [AB] implies that, in the dual pair correspondence for
(O(q + 1, q), Sp(2q,R)),

(8.3.2) JO(q+1,q)(δ0, ν) ⊗ χ+− ↔ JMp(2q)(δ0,q, ν)

for all choices of the parameter ν allowed. Because tensoring by a unitary character,
and taking duals, does not change whether a representation is unitary or not, this is
again a unitarity preserving bijection. Then, if ν is in the spherical complementary
series ofO(q+1, q) (or SO(q+1, q)0), the representation JMp(2q)(δ0,q, ν) ofMp(2q) is
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unitary. We want to prove that, if p > q, the representation JMp(2(p+q))(δp,q, (ρp|ν))
of Mp(2(p+ q)) is also unitary.
Consider the dual pair correspondence for the pair (O(q + 1, q), Sp(2(p+ q),R));
set π = JO(q+1,q)(δ0, ν) ⊗ χ+− and let π′ be the representation of Mp(2(p + q))
which corresponds to π. Since p > q, we are in the stable range with the orthogonal
group the smallest member; therefore, by Theorem 12, π′ is unitary (and nonzero).
We will show that π′ = JMp(2(p+q))(δp,q, (ρp|ν)). The induction principle (see §8 of
[AB]) implies that π′ is a constituent of IMp(2(p+q))(δp,q, (ρp|ν)). Since triv ⊗ det
is of minimal degree in π, the K-type triv ⊗ det occurs in H. By (8.1.3), the
correspondingK ′-type is µδp,q . By Theorem 13, µδp,q occurs in π′, and is of minimal
degree. Hence π′ must be the Langlands quotient JMp(2(p+q))(δp,q, (ρp|ν)). �

8.4. Some small rank examples. In this section, we prove our conjecture for
metaplectic groups of rank up to three.

8.4.1. Mp(2). For Mp(2), we only need to consider the case p = 1, q = 0. It is well
known that

(8.4.1) CS(SO(2, 1)0, δ0) =

[
−1

2
,
1

2

]
,

and each of these parameters is unitary for the Langlands quotient J(δ1,0, ν) of
Mp(2). (Note that this result also follows from Corollary 4 or Theorem 14.) Hence
the conjecture holds.

8.4.2. Mp(4). For Mp(4), we have to consider two cases: p = 2, q = 0 and p =
1, q = 1. For the pseudospherical case, the claim follows from Theorem 14. A
picture of the unitary parameters is given in Figure 3, Section 2.

For the case p = 1, q = 1, note that the product of the two spherical comple-
mentary series

(8.4.2) CS(SO(2, 1)0, δ0) × CS(SO(2, 1)0, δ0) =

[
−1

2
,
1

2

]
×

[
−1

2
,
1

2

]

is just the unit square, so the claim follows from Corollary 4.

8.4.3. Mp(6). For Mp(6), we have two cases: p = 3, q = 0 and p = 2, q = 1.
For the pseudospherical case, the claim follows from Theorem 14. The unitary
parameters in the fundamental Weyl chamber (FWC) are:

• The intersection of the FWC with the unit cube: 0 ≤ ν3 ≤ ν2 ≤ ν1 ≤ 1
2 .

• The line segment from
(

1
2 ,

1
2 ,

1
2

)
to

(
1, 1

2 , 0
)
:

(
1
2 + t, 1

2 ,
1
2 − t

)
, for 0 ≤ t ≤ 1

2 .

• The line segment from
(
1, 1

2 , 0
)

to
(

3
2 ,

1
2 ,

1
2

)
:

(
1 + t, 1

2 , t
)
, for 0 ≤ t ≤ 1

2 .

• The line segment from (1, 1, 0) to
(

3
2 ,

1
2 ,

1
2

)
: (1 + t, 1 − t, t), for 0 ≤ t ≤ 1

2 .

• The line segment from
(

3
2 ,

1
2 , 0

)
to

(
3
2 ,

1
2 ,

1
2

)
:

(
3
2 ,

1
2 , t

)
, for 0 ≤ t ≤ 1

2 .

• The isolated point:
(

5
2 ,

3
2 ,

1
2

)
.

For the case p = 2, q = 1, the product of the two spherical complementary series

(8.4.3) CS(SO(3, 2)0, δ0) × CS(SO(2, 1)0, δ0)

looks as follows.
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Figure 3. CS(SO(3, 2)0, δ0) × CS(SO(2, 1)0, δ0)

We need to prove that each of these points is unitary for Mp(6). The unitarity
of the unit cube follows from Corollary 4. It remains to prove the unitarity of the
line segments. Note that every point in a line segment is conjugate to a parameter
of the form

(8.4.4)

(
3

2
,
1

2
, t

)
0 ≤ t ≤ 1

2

under the stabilizer of δ2,1. Because
(

3
2 ,

1
2

)
is equal to ρ2 (see (8.3.1)), the claim

follows immediately from Theorem 15. Another proof will be given in the next
section.

8.5. Another family of non-pseudospherical examples. Let P = MAN be
a minimal parabolic subgroup of Mp(2n), and let P1 = M1A1N1 be a parabolic
subgroup containing P . Then

(8.5.1) P ∩M1 = MAMNM

is a minimal parabolic subgroup ofM1. For each pair of (real) characters νM ∈ a∗M,R,

ν1 ∈ a∗1,R write ν = (νM |ν1) for the corresponding character of A = AMA1. Let δ

be a genuine character of M , and let J(δ, νM ) be the Langlands subquotient of the
principal series

(8.5.2) IndM1

MAMNM
(δ ⊗ νM ⊗ 1).

Note that J(δ, νM ) is always irreducible.

Proposition 6. Consider the induced representation

(8.5.3) I(ν1) := Ind
Mp(2n)
M1A1N1

(J(δ, νM ) ⊗ ν1 ⊗ 1).

Set ν = (νM |ν1), and assume that ν1 satisfies:

(8.5.4)





〈ν, β〉 6∈ 2N + 1 for all β ∈ ∆(n1) that are good for δ

〈ν, β〉 6∈ 2N + 2 for all β ∈ ∆(n1) that are bad for δ.

Then I(ν1) is irreducible.

Proof. This follows from Corollary 5, (the proof of) Theorem 8 in [KZ] and Corol-
lary 3.9 in [SV]. �
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Corollary 7. In the setting of Proposition 6, let J(ν1) be the (irreducible) Lang-
lands subquotient of I(ν1). (In our standard notation, J(ν1) = J(δ, ν) with ν =
(νM |ν1).) Let R ⊂ a∗1,R be any connected region in the complement of the hyper-

plane arrangement defined in (8.5.4). If J(ν1) is unitary for some value of ν1 in
R, then J(ν1) is unitary throughout the closure of R.

Theorem 16. Let G = Mp(2n). Choose a genuine representation δ = δp,q of M ,
and let ν = (νp|νq), with νp = (a1, . . . , ap) and νq = (ap+1, . . . , an), be a character
of A such that

(8.5.5) νp ∈ CS(SO(p+ 1, p)0, δ0) and νq ∈ CS(SO(q + 1, q)0, δ0).

Suppose that

• For all j = 1, . . . , p, either 0 ≤ |aj | ≤ 3/2 or aj ∈ Z + 1
2 .

• For all j = p+ 1, . . . , n, 0 ≤ |aj | ≤ 1
2 (i. e., νq belongs to the unit cube).

Then the Langlands subquotient J(δ, ν) is unitary.

Proof. Let P = MAN be a minimal parabolic subgroup of G. and let P1 =
M1A1N1 be a parabolic subgroup of G containing P , with Levi factor

(8.5.6) M1A1 := Mp(2p) ×
(
G̃L(1,R)

)q
.

The Langlands subquotient of IndM1

M1∩P
(δ⊗νp⊗1) is isomorphic to J(δp,0, νp)⊗δ0,q,

where J(δp,0, νp) is a pseudospherical irreducible representation of Mp(2p). Given
the assumptions on νp and Theorem 14, J(δp,0, νp) is unitary.
Consider the induced representation

(8.5.7) I(νq) := Ind
Mp(2n)
M1A1N1

((J(δp,0, νp) ⊗ δ0,q) ⊗ νq ⊗ 1) ,

and let J(νq) be its Langlands subquotient. (Note that J(νq) is isomorphic to
J(δ, ν).) Up to sign, the roots of N1 are:

(8.5.8)
2ǫi for p+ 1 ≤ i ≤ n
ǫi ± ǫj for p+ 1 ≤ i < j ≤ n
ǫi ± ǫj for 1 ≤ i ≤ p and p+ 1 ≤ j ≤ n.

The roots in the first two rows are good for δ, the remaining ones are bad. Under our
assumptions on νp, if νq is in the interior of the unit cube, then the conditions (8.5.4)
are satisfied. Hence by Proposition 6, I(νq) is irreducible. Moreover, J(0) = I(0)
is unitarily induced, hence unitary. By Corollary 7, J(νq) = J(δ, ν) is unitary for
all νq in the (closed) unit cube. �

We list some applications. First, Theorem 16 provides a second proof of the fact
that the Langlands quotient

(8.5.9) J
(
δ2,1,

(
3
2 ,

1
2 , t

))

of Mp(6) is unitary, for all 0 ≤ t ≤ 1
2 .

Second, by inspection, all the parameters ν3 in CS(SO(4, 3)0, δ0) (listed in Section
8.4.3) satisfy the conditions on νp in Theorem 16. Hence Conjecture 3 holds for the
δ3,1-complementary series of Mp(8). For the δ2,2-complementary series of Mp(8),
Theorem 16 implies unitarity for all expected parameters, except the isolated rep-
resentation J(δ2,2, (

3
2 ,

1
2 ,

3
2 ,

1
2 )). This proves our conjecture for Mp(8), with the

possible exception of a single unipotent representation.
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Finally, observe that all parameters ν4 ∈ CS(SO(5, 4)0, δ0) also satisfy the condi-
tions on νp in Theorem 16 (see Section 11). Therefore, our conjecture holds for the
δ4,1-complementary series of Mp(10) as well.

9. Representations of Weyl groups of type C

The stabilizers of genuine M -types are subgroups of W (Cn) of the form W (Cp)×
W (Cq), for some pair (p, q) of non-negative integers such that p + q = n. In this
section, we describe the irreducible representations of Weyl groups of type C.

Let k be a non-negative integer. The Weyl group W (Ck) is the semidirect
product of the symmetric group Sk by the abelian normal subgroup (Z/2Z)k:

(9.0.10) W (Ck) ≃ Sk ⋉ (Z/2Z)k.

Using the method of “little groups” of Wigner and Mackey (see [Si], Chapter 7 or
[Se], Chapter 8), one can show that all irreducible representations of W (Ck) can be
obtained as follows.

For non-negative integers a and b such that a + b = k, let χ = triva ⊗ signb

be the character of (Z/2Z)k which is trivial on the first a Z/2Z factors, and is the
sign character on the last b. The stabilizer of χ in Sk is isomorphic to Sa × Sb.
Irreducible representations of a symmetric group are parameterized by partitions,
hence irreducible representations of Sa×Sb are parameterized by pairs of partitions
(λ, τ), with λ ⊢ a and τ ⊢ b. We write λ ⊗ τ for the corresponding representation
of Sa × Sb. Then

[λ⊗ τ ] · [(triv)a ⊗ (sign)b]

is a well defined representation of (Sa×Sb)⋉ (Z/2Z)k. The induced representation

(9.0.11) λ× τ := Ind
Sk⋉(Z/2Z)k

(Sa×Sb)⋉(Z/2Z)k [λ⊗ τ ] · [(triv)a ⊗ (sign)b]

is an irreducible representation of W (Ck) = Sk ⋉ (Z/2Z)k, and all irreducible
representations of W (Ck) are obtained this way.

Recall from Theorem 5 the relevant representations of W (Ck); they are those of
the form (a, b) × (0) or (a) × (b).
The representation (a, b), which we will denote simply (a, b) for brevity of notation,
is the pull-back to W (Ck) of the irreducible representation of Sk corresponding to
the partition (a, b) of k. It is an irreducible representation of W (Ck) of dimension(
k

a

)
(k − 2a+ 1)/(k − a+ 1) in which (Z/2Z)k acts trivially.

The symbol (a) × (b) denotes the representation of W (Ck) of dimension

(
k

a

)
that

is induced from the unique representation of (Sa × Sb) ⋉ (Z/2Z)k in which Sa, Sb
and (Z/2Z)a act trivially, and (Z/2Z)b acts by (sign)b. In particular, (k− 1)× (1)
denotes the natural k-dimensional reflection representation of W .

10. Calculations

In this section, we prove Proposition 1 of Section 5.1. Refer to Section 5.1 for
notation.

Proposition. The set ΣW (G, δp,q) contains every irreducible relevant representa-
tion of W (Cp) and every irreducible relevant representation of W (Cq).
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The proof is by direct computation. For every irreducible relevant representation
τ of W (Cp) or W (Cq), we display a petite K-type µ such that the representation
of W δp,q = W (Cp) ×W (Cq) on the space

Vµ[δp,q] := HomM (µ, δp,q)

is equal to the W δp,q -type τ ⊗ triv or triv ⊗ τ , respectively. The precise matching
is given in (5.1.6).

10.1. The W (Cp)-type (p − s) × (s). We prove that the W δp,q -type ((p − s) ×
(s)) ⊗ triv can be realized on the space Vµ[δp,q], for

(10.1.1) µ =




1

2
, . . . ,

1

2︸ ︷︷ ︸
p−s

,−1

2
, . . . ,−1

2︸ ︷︷ ︸
q

,−3

2
, . . . ,−3

2︸ ︷︷ ︸
s


 .

It is convenient to realize µ inside the tensor product:

(10.1.2) ρ := Λp−sCn ⊗ Λn−sCn ⊗ det−3/2.

Note that

(10.1.3) Λp−sCn ⊗ Λn−sCn =

p−s⊕

a=0


2, . . . , 2︸ ︷︷ ︸

p−s−a

, 1, . . . , 1︸ ︷︷ ︸
q+2a

, 0, . . . , 0︸ ︷︷ ︸
s−a


 ,

hence

(10.1.4) ρ =

p−s⊕

a=0




1

2
, . . . ,

1

2︸ ︷︷ ︸
p−s−a

,−1

2
, . . . ,−1

2︸ ︷︷ ︸
q+2a

,−3

2
, . . . ,−3

2︸ ︷︷ ︸
s−a


 .

As an M -module,

(10.1.5) ρ =


 ⊕

|T |=p−s

δ′T


 ⊗


 ⊕

|S|=n−s

δ′S


 ⊗ δ∅ =

⊕

|T | = p− s
|S| = n− s

δ(T∆S),

where T∆S denotes, as usual, the symmetric difference of the two sets. (The
notation for M -types is as in Section 3.2.)
Note that ρ contains everyM -type δU with q ≤ |U | ≤ q+2(p−s) and, in particular,
it contains δp,q. For all I = {i1, i2, . . . , ip−s} ⊂ {1, 2, . . . , p}, set
(10.1.6)
vI :=

[
ei1 ∧ ei2 ∧ · · · ∧ eip−s

]
⊗

[
ei1 ∧ ei2 ∧ · · · ∧ eip−s ∧ ep+1 ∧ ep+2 ∧ · · · ∧ en

]

and define

(10.1.7) V := Span{vI : I ⊂ {1, 2, . . . , p}, |I| = p− s}.

It is easy to check that the

(
p

s

)
-dimensional space V is contained in the δp,q-isotypic

component inside ρ. We claim that V is actually contained in µ: for all I, vI is a
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weight vector of weight

(10.1.8)


−3

2
, . . . ,−3

2
,
1

2
↑
i1

,−3

2
, . . . ,−3

2
,

1

2
↑

ip−s

,−3

2
, . . . ,−3

2
,−1

2
, . . . ,−1

2︸ ︷︷ ︸
q


 ;

this weight is conjugate to the highest weight of µ (and ρ)

(10.1.9) ̟ =




1

2
, . . . ,

1

2︸ ︷︷ ︸
p−s

,−1

2
, . . . ,−1

2︸ ︷︷ ︸
q

,−3

2
, . . . ,−3

2︸ ︷︷ ︸
s




by the compact Weyl group, hence vI must belong to µ.
We study the representation ψ of the stabilizer of δp,q on the subspace HomM (V, δp,q)

of Vµ[δp,q], and prove that it equals (p− s) × (s) ⊗ triv.
Recall that W δp,q ≃W (Cp) ×W (Cq). Let σǫk−ǫl and σ2ǫk be representatives in

K for the root-reflections sǫk−ǫl and s2ǫk , as in Section 3.1. Identify δp,q with its
isotypic component inside the fine K-type

(10.1.10) µδp,q =




1

2
, . . . ,

1

2︸ ︷︷ ︸
p

,−1

2
, . . . ,−1

2︸ ︷︷ ︸
q


 = ΛpCn ⊗ det−1/2,

and write V δp,q = C〈w〉, with w = e1 ∧ e2 ∧ · · · ∧ ep. The elements vI with
I = {i1 < i2 · · · < ip−s} ⊂ {1, 2, . . . , p} form a basis of V . Let

(10.1.11) {TJ : vI 7→ δI,J w}
be the corresponding basis of HomM (V, V δp,q).

If α = ǫk − ǫl, with 1 ≤ k < l ≤ p or p + 1 ≤ k < l ≤ n, the element σα
acts trivially on both V and V δp,q , therefore the root-reflection sα acts trivially on
HomM (V, V δp,q). If α = 2ǫk, then

(10.1.12) µ(σα)vI =





−e− 3πi
4 vI if k ∈ I

+e−
3πi
4 vI if k ∈ {1, 2, . . . , p} − I

i e−
3πi
4 vI if k ∈ {p+ 1, p+ 2, . . . , n}

and

(10.1.13) µδ(σα)w =

{
i e−

πi
4 w if k ∈ {1, 2, . . . , p}

e−
πi
4 w if k ∈ {p+ 1, p+ 2, . . . , n}.

Hence

(10.1.14) ψ(sα)TJ =

{
−TJ if k ∈ {1, 2, . . . , p} − J
+TJ if k ∈ J ∪ {p+ 1, p+ 2, . . . , n}.

Let Sp−s and (Z/2Z)p−s be the (appropriate) subgroups of W (Cp) acting on the
first p − s coordinates, and let Ss, (Z/2Z)p−s be the ones acting on the last s
coordinates. Note that:

• The restriction of ψ to W (Cq) is trivial, hence ψ is of the form ψ′ ⊗ triv
for some representation ψ′ of W (Cp).
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• The groups Sp−s, Ss and (Z/2Z)p−s act trivially on the vector T{1,...,p−s},
and (Z/2Z)s acts on it by sign. Hence the restriction of ψ′ to the group
(Sp−s × Ss) ⋉ (Z/2Z)p contains the one-dimensional representation

(10.1.15) [(p− s) ⊗ (s)] · [(triv)p−s ⊗ (sign)s].

By Frobenius reciprocity,

(10.1.16) ψ′ ⊇ (p− s) × (s).

Actually, ψ′ = (p− s) × (s), for dimensional reasons.

We conclude that ψ = ((p− s) × (s)) ⊗ triv, as claimed.

10.2. The W (Cp)-type (p − s, s). For all s ∈ {0, 1, . . . ,
[
p
2

]
}, let ρs be the tensor

product

(10.2.1) ρs := ΛsCn ⊗ Λq+s(Cn)∗ ⊗ det1/2.

Note that

(10.2.2) ΛsCn ⊗ Λq+s(Cn)∗ =

s⊕

a=0


1, . . . , 1︸ ︷︷ ︸

a

, 0, . . . , 0︸ ︷︷ ︸
p−2a

,−1, . . . ,−1︸ ︷︷ ︸
q+a


 ,

hence

(10.2.3) ρs =
s⊕

a=0




3

2
, . . . ,

3

2︸ ︷︷ ︸
a

,
1

2
, . . . ,

1

2︸ ︷︷ ︸
p−2a

,−1

2
, . . . ,−1

2︸ ︷︷ ︸
q+a


 .

As an M -module,

(10.2.4) ρs =


 ⊕

|T |=s

δ′T


 ⊗


 ⊕

|S|=q+s

δ′S


 ⊗ δ∅ =

⊕

|T | = s
|S| = q + s

δT∆S .

Then ρs contains every M -type δU with q ≤ |U | ≤ q + 2s and, in particular, it
contains the M -type δp,q. The δp,q-isotypic in ρs is spanned by the vectors:

(10.2.5) vI := [ei1 ∧ ei2 ∧ · · · ∧ eis ]⊗ [fi1 ∧ fi2 ∧ · · · ∧ fis ∧ fp+1 ∧ fp+2 ∧ · · · ∧ fn]

with I = {i1, i2, . . . , is} ⊂ {1, 2, . . . , p} (of cardinality s), and can be identified with
the weight space in ρs corresponding to the weight

(10.2.6) ̟ =




1

2
, . . . ,

1

2︸ ︷︷ ︸
p

,−1

2
, . . . ,−1

2︸ ︷︷ ︸
q


 .
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Note that the weight ̟ occurs in each ρs with multiplicity

(
p

s

)
, and in ρ0 =

Λq(Cn)∗ ⊗ det1/2 with multiplicity 1. Because
(10.2.7)

ρs = ρs−1

⊕



3

2
, . . . ,

3

2︸ ︷︷ ︸
s

,
1

2
, . . . ,

1

2︸ ︷︷ ︸
p−2s

,−1

2
, . . . ,−1

2︸ ︷︷ ︸
q+s


 ∀ s ∈

{
1, . . . ,

[p
2

]}
,

we conclude that the K-type

(10.2.8) µs :=




3

2
, . . . ,

3

2︸ ︷︷ ︸
s

,
1

2
, . . . ,

1

2︸ ︷︷ ︸
p−2s

,−1

2
, . . . ,−1

2︸ ︷︷ ︸
q+s




contains δp,q with multiplicity

(10.2.9) ms =

(
p

s

)
−

(
p

s− 1

)

for all s ∈ {1, . . . ,
[
p
2

]
}. Note that the multiplicity of δp,q in µ0 is 1, so the previous

formula holds also for s = 0 if we let

(
p

−1

)
= 0.

The purpose of this section is to compute the representation ψs of the stabilizer
of δp,q in W (the group W δp,q ≃W (Cp)×W (Cq)) on the space Vµs [δp,q], and prove
that it equals (p− s, s) ⊗ triv.

It is convenient to first look at the representation of W δp,q on the larger space
Vρs [δp,q], which we denote ψ̃s. We identify δp,q with its isotypic component inside

the fine K-type µδp,q = ΛpCn ⊗ det−1/2, and choose the bases

(10.2.10) w = e1 ∧ e2 ∧ · · · ∧ ep
of V δp,q and

(10.2.11) {vI : I ⊂ {1, 2, . . . , p}, |I| = s}
of V ρs . The maps

(10.2.12) TJ : vI → δI,J w

form a basis of Vρs [δp,q]. If α = 2ǫk, then

(10.2.13) µ(σα)vI =

{
e

πi
4 vI if k ∈ {1, 2, . . . , p}

e−
πi
4 vI if k ∈ {p+ 1, p+ 2, . . . , n}

and

(10.2.14) µδ(σα)w =

{
e

πi
4 w if k ∈ {1, 2, . . . , p}

e−
πi
4 w if k ∈ {p+ 1, p+ 2, . . . , n}.

Hence

(10.2.15) ψ̃s(sα)TJ = TJ ∀J .
This proves that the representation ψ̃s of W (Cp) ×W (Cq) on Vρs [δp,q] is actually
a representation of Sp × Sq. Now set α = ǫk − ǫl. If p+ 1 ≤ k < l ≤ n, then

(10.2.16) µ(σα)vI = vI ∀ I
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and

(10.2.17) µδ(σα)w = w.

Again, we find that ψ̃s(sα)TJ = TJ , ∀J . So the symmetric group Sq acts trivially,
and we are really dealing with a representation of Sp. If 1 ≤ k < l ≤ p, then

(10.2.18) µ(σα)vI =

{
vI if {k, l} ⊆ I or {k, l} ⊆ Ic
vI△{k,l} otherwise

and µδp,q (σα)w = w. It is easy to check that the symmetric group Sp permutes the
subspaces

(10.2.19) UI := CvI I ⊆ {1, . . . , p}, |I| = s

transitively, and that the space Vρs [δp,q] (on which the representation ψ̃s is defined)
decomposes as the direct sum of the UI ’s:

(10.2.20) Vρs [δp,q] =
⊕

I⊆{1,...,p}, |I|=s

UI .

Set I0 = {1, 2, . . . , s} and U = UI0
, and let H be the stabilizer of U in Sp (i.e. the

set of all η in Sp such that ηU = U). Then

• U is stable under H , and
• the Sp-module Vρs [δp,q] is induced from the H-module U

(see [Se], Proposition 19 ). Because U is isomorphic to the trivial representation of
H , and H is isomorphic to Sp−s × Ss, we find that:

(10.2.21) ψ̃s|Sp = Ind
Sp

Sp−s×Ss
triv = M (p−s,s).

The permutation module M (p−s,s) of Sp decomposes as a direct sum of Specht
modules:

(10.2.22) M (p−s,s) =
⊕

λD(p−s,s)

Sλ =

s⊕

a=0

S(p−a,a)

(with abuse of notation we let (p− 0, 0) denote the trivial partition). Then

(10.2.23) ψ̃s|W (Cp) =

s⊕

a=0

(p− a, a)

and

(10.2.24) ψ̃s =

s⊕

a=0

(p− a, a) ⊗ triv.

We can also write:

(10.2.25) ψ̃s = Vρs [δp,q] = V sL
a=0

µa

[δp,q] =

s⊕

a=0

Vµa [δp,q] =

s⊕

a=0

ψa.

In order to prove that ψa = (p − a, a) ⊗ triv for all a, it is sufficient to show that
the result holds for a = 0:

(10.2.26) ψ0 = (p) ⊗ triv = triv ⊗ triv;
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the rest of the claim will follow by induction. This is easy to do: the K-type µ0 is
the unique fine K-type µδp,q containing δp,q, hence the representation ψ0 = Vµ0

[δp,q]
is trivial. We conclude that

(10.2.27) ψs = (p− s, s) ⊗ triv

for all s = 0, 1, . . . ,
[
p
2

]
.

10.3. RelevantW (Cq)-types. Similar arguments prove that theW δp,q -types triv⊗
((q − r) × (r)) and triv ⊗ (q − r, r) can be realized on the space Vµ[δp,q], for

(10.3.1) µ =




3

2
, . . . ,

3

2︸ ︷︷ ︸
r

,
1

2
, . . . ,

1

2︸ ︷︷ ︸
p

,−1

2
, . . . ,−1

2︸ ︷︷ ︸
q−r




and

(10.3.2) µ =




1

2
, . . . ,

1

2︸ ︷︷ ︸
p+r

,−1

2
, . . . ,−1

2︸ ︷︷ ︸
q−2r

,−3

2
, . . . ,−3

2︸ ︷︷ ︸
r


 .

respectively. The details are left to the reader.

11. Appendix: The spherical unitary dual of SO(n+ 1, n)0.

In this section, we give an explicit description of the spherical unitary dual of
split groups of type B. All the results are known, and due to D. Barbasch (see
[Ba1] or [BCP]); we include them here for convenience.

Let G = SO(n + 1, n)0 be the real split connected group of type Bn and let
ǧ = sp(2n,C) be the complex dual Lie algebra. The spherical unitary dual of G
is a disjoint union of sets, called “complementary series”, each parameterized by a
nilpotent orbit in ǧ. Recall that nilpotent orbits in sp(2n,C) are parameterized by
partitions of 2n in which every odd part occurs with even multiplicity.

Definition 8. Let χ be a real parameter in ȟ, and let Ǒ be a nilpotent orbit in ǧ.
We say that “χ is attached to Ǒ” if

(1) χ = ȟ/2 + ν, for some semisimple element ν ∈ Zǧ(Ǒ) and

(2) whenever Ǒ′ is another nilpotent orbit in ǧ such that χ = ȟ′/2 + ν′, for

some ν′ ∈ Zǧ(Ǒ′) semisimple, then Ǒ′ ⊂ ¯̌O.

If χ is a real parameter in ȟ, we can identify χ with an element of a∗
R
, and

consider the irreducible spherical representation J(δ0, χ) of G.

Definition 9. A representation J(δ0, χ) is in the “complementary series for Ǒ” if

(1) χ is a parameter attached to Ǒ, and
(2) J(δ0, χ) is unitary; i. e., χ ∈ CS(G, δ0).

The zero complementary series, i. e., the complementary series attached to the
trivial nilpotent orbit, plays a special role.

Theorem 17. (Barbasch) For every nilpotent orbit Ǒ in ǧ, let G0(Ǒ) be the con-
nected real split group whose complex dual Lie algebra is Zǧ(Ǒ). Let χ = 1

2 ȟ+ ν be

a parameter attached to the nilpotent orbit Ǒ. Then χ is in the Ǒ-complementary



UNITARY GENUINE PRINCIPAL SERIES OF THE METAPLECTIC GROUP 43

for the group G if and only if ν is in the zero-complementary series for the group
G0(Ǒ).

(Note that ν ∈ Zǧ(Ǒ), so we can think of ν as a spherical parameter for G0(Ǒ).)
The zero complementary series of all real split groups is known, thanks to the work
of D. Barbasch. If G = SO(n+ 1, n)0, the group G0(Ǒ) can only involve factors of
type Bk, Ck and Dk. We recall the 0-complementary series for these groups.

Theorem 18. (Barbasch) The 0-complementary series for split groups of type Bk,
Ck and Dk consists of the following dominant parameters:

Bk. the set of all χ = (ν1, . . . , νk) such that 0 ≤ ν1 ≤ ν2 ≤ · · · ≤ νk <
1
2 .

Ck. the set of all χ = (ν1, . . . , νk) such that there exists an index i = 2, . . . , k
with the property that

0 ≤ ν1 ≤ · · · ≤ νi < 1 − νi−1 < νi+1 < · · · < νk < 1

and, for every i ≤ j < k, there is an odd number of νl with 1 ≤ l < i such
that νj < 1 − νl < νj+1.

Dk. similar to type Ck. If k is even, replace every occurrence of ν1 by |ν1|. If k
is odd, replace every occurrence of ν1 by 0.

Note that the choice of simple roots (and dominant parameters) is not the stan-
dard one. This theorem shows that the 0-complementary series for a split group of
type B reduces to the fundamental alcove, the ones for types C and D are a bit
more complicated. Here are some low rank examples.

C1. 0 ≤ ν1 < 1.
D1. ν1 = 0.
C2. 0 ≤ ν1 ≤ ν2 < 1 − ν1 < 1.
D2. 0 ≤ |ν1| ≤ ν2 < 1 − |ν1| < 1.
C3. 0 ≤ ν1 ≤ ν2 < 1 − ν1 < ν3 < 1 or 0 ≤ ν1 ≤ ν2 ≤ ν3 < 1 − ν2 < 1.
D3. ν1 = 0 and 0 ≤ ν2 ≤ ν3 < 1 − ν2 < 1.
C4. 0 ≤ ν1 ≤ ν2 ≤ ν3 < 1 − ν2 < ν4 < 1 − ν1 < 1 or 0 ≤ ν1 ≤ ν2 ≤ ν3 ≤ ν4 <

1 − ν3 < 1.
D4. 0 ≤ |ν1| ≤ ν2 ≤ ν3 < 1 − ν2 < ν4 < 1 − |ν1| < 1 or 0 ≤ |ν1| ≤ ν2 ≤ ν3 ≤

ν4 < 1 − ν3 < 1.

Let us go back to the problem of determining the spherical unitary dual of
SO(n+ 1, n)0. In order to describe the complementary series attached to an orbit
Ǒ in ǧ, we need to:

(1) Find the group G0(Ǒ).
(2) Find all the parameters χ = 1

2 ȟ+ ν attached to Ǒ.

(3) Impose that ν belongs to the zero complementary series of G0(Ǒ).

Let λ be the partition corresponding to the nilpotent orbit Ǒ; denote the parts
of λ by al, and their multiplicity by rl:

λ = (a1, . . . , a1︸ ︷︷ ︸
r1

, . . . , am, . . . , am︸ ︷︷ ︸
rm

)

(rl is even if al is odd). The centralizer Zǧ(Ǒ) of Ǒ in ǧ is a product of symplectic
and orthogonal Lie algebras. Precisely, there is a factor sp(rl) coming from each
odd part, and a factor so(rl) coming from each even part.
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Example. If λ = (642318), then Zǧ(Ǒ) is of type D2 ×B1 × C4 :

Zǧ(Ǒ) = so(4) ⊕ so(3) ⊕ sp(8).

Hence G0(Ǒ) is of type D2 × C1 ×B4:

G0(Ǒ) = SO(2, 2)0 × Sp(2) × SO(5, 4)0.

We describe the contribution of each part of λ to χ = 1
2 ȟ+ ν, and show how to

determine the restrictions on ν that make χ unitary.
If a is an odd part of λ, its multiplicity is necessarily even. If ra = 2na, the

partition λ contains na pairs of the form (a, a). The jth pair (a, a) contributes a
string

−
(
a−1
2

)
,−

(
a−3
2

)
, . . . ,−1, 0,+1, . . . ,+

(
a−3
2

)
,+

(
a−1
2

)

(of length a) to 1
2 ȟ, and a string

(νaj , ν
a
j , . . . , ν

a
j )

(also of length a) to ν. Moreover, the part a contributes a factor sp(2na) to the
stabilizer of the orbit, and a factor SO(na + 1, na)0 to the group G0(Ǒ). To find
the possible values of the νaj ’s, we impose the condition that the parameter

(νa1 , . . . , ν
a
na

)

belongs to the zero-complementary series for SO(na + 1, na)0 (see Theorem 18).
If a is an even part of λ, its multiplicity ra can be even or odd. We discuss the

two cases separately. If ra = 2na, the partition λ contains na pairs of the form
(a, a). The jth pair (a, a) contributes a string

−
(
a−1
2

)
,−

(
a−3
2

)
, . . . ,− 1

2 ,+
1
2 , . . . ,+

(
a−3
2

)
,+

(
a−1
2

)

(of length a) to 1
2 ȟ, and a string

(νaj , ν
a
j , . . . , ν

a
j )

(also of length a) to ν. Moreover, the part a contributes a factor so(2na) to the
stabilizer of the orbit, and a factor SO(na, na)0 to the group G0(Ǒ). To find the
possible values of the νaj ’s, we require that the parameter

(νa1 , . . . , ν
a
na

)

belongs to the zero-complementary series for SO(na, na)0.
If ra = 2na+1, the partition λ contains na pairs of the form (a, a) and a “singleton”a.
The contributions of each pair (a, a) to 1

2 ȟ and to ν are the same as before. The
singleton contributes a string

(
1
2 ,

3
2 , . . . ,

a−1
2

)

(of length a/2) to 1
2 ȟ, and a string of zeros to ν (also of length a/2). The part a also

contributes a factor so(2na + 1) to the stabilizer of the orbit, and a factor Sp(2na)
to the group G0(Ǒ). To find the range for the νaj ’s, we impose the condition that
the parameter

(νa1 , . . . , ν
a
na

)

belongs to the zero-complementary series for Sp(2na).
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Example. (continued) For our example, λ = (642318). The complementary series
of G = SO(20, 19)0 attached to this orbit is

{(
− 5

2 + ν1,− 3
2 + ν1,− 1

2 + ν1,
1
2 + ν1,

3
2 + ν1,

5
2 + ν1,

− 5
2 + ν2,− 3

2 + ν2,− 1
2 + ν2,

1
2 + ν2,

3
2 + ν2,

5
2 + ν2,

1
2 ,− 1

2 + ν3,
1
2 + ν3, ν4, ν5, ν6, ν7

)}
,

with

0 ≤ |ν1| ≤ ν2 < 1 − |ν1| < 1,

0 ≤ ν3 < 1, and

0 ≤ ν4 ≤ ν5 ≤ ν6 ≤ ν7 <
1
2 .
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